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A. Illustration of Viewpoint Variation Problem

Figure 1 illustrates the viewpoint variation problem of
using joint position-based pose representation for feature
extraction with a toy example. When a vector

−−→
AB in the

world coordinate is recorded by the two frontal-view cam-
eras in the Human3.6M dataset, the vectors

−−−→
A′B′ and

−−−→
A′′B′′

differ vastly between the two viewpoints. In practice, points
A and B could represent the root joint and another joint of
a subject, respectively. When recording the same pose in
the world coordinate, the joint positions relative to a root
joint would appear vastly different among different cam-
eras. Without extra modelings, it would be difficult for neu-
ral networks or other feature extractors to capture such vari-
ations.

Figure 1. A toy example illustrating the viewpoint variant problem
of 3D human poses.

B. Ablation Study on Loss Design

To show the impact of individual losses, we have done
an ablation study. See the results in Table 1. It can be seen
that when only Lrecon is used (1st row) EQ is still able
to converge, but when only Lcycle is used (2nd row), EQ is
hard to generalize on the test set. This indicates that without
explicit reconstruction of 3D poses, EQ can hardly capture
the proximity of the poses w.r.t joint rotations. With both
losses (from 3rd row and onwards), EQ is constrained to

implicitly pair a pose from a video frame and the projected
condition pose, since the two 2D poses are mapped to the
same set of joint rotations.

Loss MPJPE ↓ ∆MPJPE ↓
Lrecon 58.96 60.97
Lcycle 324.97 355.39
Lrecon + ϕLcycle 56.90 59.14
Lrecon + ϕLcycle + βLjrc 53.96 54.23
L (Ours) 52.61 53.35

Table 1. Ablation study on the normalization losses. (unit: mm)

C. Implementation Details

The proposed pose normalization and embedding net-
works are implemented in PyTorch. In data pre-processing,
the input 2D poses to EQ are centered by subtracting the
root joint, scaled by frame resolution and then normalized
to [-1,1]; the ground-truth 3D poses are root-centered but
not scaled, since FK does not contain learnable parameters
and a projection is required in the training pipeline. The pa-
rameters of the source skeleton st are mainly limb lengths,
which are computed as the Euclidean distances between
physically-connected joints. An alternative way to obtain st
is to retrieve the bone lengths from the Human3.6M dataset
meta-data files. While these two ways result in the same
skeletons, directly computing bone lengths from 3D poses
allows easy generalization to our bone-augmented dataset,
as well as other potential 3D human pose datasets.

The two networks EQ and EP were trained in differ-
ent stages, i.e., we first trained the network for pose nor-
malization and then froze the parameters and trained the
pose embedding network using the output of the former. In
the learning of pose normalization, ϕ = 0.6, β = 1, and
λ = 0.1 in our experiments. In the learning of pose em-
beddings, the positive range was set as [0, 0.2]; the negative
range was set as [0.8, 1.0] at the beginning of the training
as easy negative, and changed into the range [0.5, 0.75] for
harder negative samples. We adopted d = 64 as the dimen-
sion of pose features.

The details of the architecture of the pose normalization
network EQ in Section 3.2 is shown in Table 2. The archi-
tecture of the pose embedding network EP in Section 3.3 is
the same as that in the paper [2], except for the only differ-



ence that the output dimension is changed into the dimen-
sion of pose feature, instead of the number of joint position
parameters.

# Layer Dim Kernel Stride Padding

1 Conv1d-Norm (34,1024) 1 1 0
2 Conv1d-Norm (1024,1024) 5 1 0
3 Conv1d-Norm (1024,1024) 3 1 0
4 Conv1d-Norm (1024,1024) 1 1 0
5 Conv1d-Norm (1024,1024) 5 1 0
6 Conv1d-Norm (1024,1024) 3 1 0
7 Conv1d-Norm (1024,1024) 1 1 0
8 Conv1d (1024,68) 1 1 0

Table 2. Network architecture for EQ.

D. Parameters of Condition Skeleton
Figure 2 shows the definition of 10 bone segments of

the condition skeleton and their corresponding lengths. The
condition skeleton is bilaterally symmetric in bone lengths.
Their lengths are defined according to the average bone
lengths in the training set of Human3.6M. During training,
these bone lengths are used in the FK in the cycle recon-
struction branch (Figure 3(c)) to compute the positions of
the 17 joints in the condition skeleton.

Figure 2. The joints and pre-defined bone lengths of the condition
skeleton. (unit:mm)

E. Dense Correspondence Dataset
In this section we provide more details on our synthetic

dense correspondence dataset based on the Human 3.6M
dataset. Of the four synchronized videos recorded from four
viewpoints for each action, we used the two in frontal views,
as shown in an example in Figure 3. The two corresponding
frames share the same subject pose, but they differ in 2D

joint positions and scales of 3D skeletons in camera coordi-
nates.

Figure 3. An example of frames in the in two frontal-view videos
used for building the correspondence dataset.

For each pair of the videos, we produced the difference
in length of source and target videos by re-sampling the
frames, and then forming new correspondences. For exam-
ple, in Figure 4(b), in the source sequence (gray dots), the
indexes of retained frames are (0,2,3,6,8,9); and those in
the target sequence are (1,3,4,5,7,10,11). Since the original
video frames are temporally aligned (Figure 4(a)), where
correspondent frames have the same frame index, the frame
indexes can be used as a feature representing similarity. Ap-
plying DTW on frame indexes yields the ground-truth cor-
respondence:

C = {(0, 0), (1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (5, 5), (5, 6)},

as illustrated in Figure 4(c).

Figure 4. This figure illustrates the construction of synthesized
correspondence dataset. (a) The originally aligned source (repre-
sented by gray dots) and target (green dots) videos; (b) the video
frames are re-sampled by randomly dropping certain frames; (c)
the new correspondence is determined by the DTW algorithm on
frame indexes.



F. Embedding Space Visualization
To track the poses in the embedding space, we visual-

ize the trajectories of action videos in Figure 5 (the trans-
parency encodes time). The loop-like shapes in the dotted
frames in the weight-lifting action (Figure 5(a)) correspond
to the half-squat and rise up in the action. In the tennis
serve example (Figure 5(b)), the starting and ending poses
are more similar, making the two ends of the trajectories
closer in the embedding space. The action of jumping-jacks
is highly periodical, and thus the trajectory of continuous
jumping-jacks also appears repetitive (Figure 5(c)).

G. More Visualization Results
In this section we demonstrate more pose normaliza-

tion results on the Penn Action dataset, as shown in Fig-
ure 6. The Penn Action dataset contains challenging poses
from sport actions. The dataset provides video frames and
ground-truth 2D poses, but without ground-truth 3D poses.
Since the 2D poses in the Penn Action Dataset only contains
13 joints, we adopted OpenPose [1] to detect 2D poses from
the video frames for the compatibility of joint numbers. We
compare the results with Procrustes aligned 3D poses by the
same 3D pose estimation method [2] as in Section 5.2. For
3D poses computed by the joint position estimation method,
it is difficult to unify their global orientations by aligning
them with a pre-defined T-pose (Figure 6(e)), especially
when the poses are complex and when the ground-truth 3D
poses are unknown. In contrast, the normalization of global
orientation can be easily achieved with joint rotations (Fig-
ure 6(g)). Our pose normalization method can generalize

to poses that are unseen during training, such as baseball
pitches.

H. Human Pose Retrieval

To evaluate the generalization ability of our pose features
to other pose similarity tasks, we conducted a pose retrieval
task on the MPI-INF-3DHP (3DHP) dataset [3], as shown
in Figure 7. We did not fine-tune our models and performed
the task directly on the 3DHP testset. For a query frame in a
video, we retrieved the top-3 frames with similar poses in all
the other videos using the L2 distance of our pose features.
Even though the subjects were performing different actions,
the retrieved poses resemble the query poses with respect to
the pose characteristics, e.g. bending over or arm raised.
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Figure 5. A visualization of action trajectories in the embedding space.



Figure 6. Visualization of pose normalization results. (a) The video frames from the Penn Action dataset; (b) the 2D poses detected from
video frames by OpenPose [1]; (c) estimated 3D poses by Martinez [2] in world coordinates; (d) 3D joint positions in camera coordinates;
(e) unify 3D poses in camera coordinates by Procrustes alignment with a pre-defined T-pose; (f) 3D condition skeleton poses by our
method; (g) our normalized 3D poses under a unified global orientation.



Figure 7. Visualization of human pose retrieval on the 3DHP test set. (a) The video frame of query poses; (b) the normalized query poses
(with global orientations); (c)-(e) top-3 retrieved poses using our pose features.
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