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Figure 1. We present PoseTween, a system for allowing novice users to easily create pose-driven tween animation of virtual objects. 

ABSTRACT 
Augmenting human action videos with visual effects often 
requires professional tools and skills. To make this more ac
cessible by novice users, existing attempts have focused on 
automatically adding visual effects to faces and hands, or let 
virtual objects strictly track certain body parts, resulting in 
rigid-looking effects. We present PoseTween, an interactive 
system that allows novice users to easily add vivid virtual 
objects with their movement interacting with a moving subject 
in an input video. Our key idea is to leverage the motion of 
the subject to create pose-driven tween animations of virtual 
objects. With our tool, a user only needs to edit the proper
ties of a virtual object with respect to the subject’s movement 
at keyframes, and the object is associated with certain body 
parts automatically. The properties of the object at intermedi
ate frames are then determined by both the body movement 
and the interpolated object keyframe properties, producing 
natural object movements and interactions with the subject. 
We design a user interface to facilitate editing of keyframes 
and previewing animation results. Our user study shows that 
PoseTween significantly requires less editing time and fewer 
keyframes than using the traditional tween animation in mak
ing pose-driven tween animations for novice users. 
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INTRODUCTION 
Adding visual effects to enhance videos has become popular 
among ordinary mobile users nowadays. Professional tools for 
adding visual effects, such as Adobe Premiere and Foundry 
Nuke, typically require trained skills. The advancement of 
real-time face detection and tracking technologies has recently 
enabled various camera mobile apps that support live face 
stickers (e.g., Sweet Snap app supports 2800 live stickers and 
are being used by over 100 million users). In such recreational 
apps, the pre-defined visual effects are aligned to track facial 
parts, which have a fixed structure. The recent efforts toward 
real-time human pose estimation (such as OpenPose [7] and 
DensePose [1]) bring similar opportunities to adding visual 
effects (pose stickers) to augment human body actions. How
ever, due to the high degrees of freedom of a human pose, 
designing pose stickers would require a specialized tool. 

There only exist few systems, such as Octi and Microsoft’s 
Story Remix, which allow adding visual effects (texts and vir
tual objects) on or around a human body. However, such sys
tems support only effects by tracking-based methods, which 
make virtual objects strictly follow the movement of the entire 
body or certain body parts, thus failing to capture the actual 
transformations of different objects. For example, to augment 
a subject’s dribbling a basketball, simply letting the basketball 
track the subject’s hand would fail to produce the bounce-and
back effect (see Figure 3(a)). Even though the movements of 
virtual objects are driven by human actions, they may have 
their own motion paths and speed variations. To achieve vivid 
effects in the interaction with human actions, the movements 
of virtual objects need to be precisely controlled. In this paper, 
we design a system that takes a step towards this emerging 
content creation scenario. 
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Figure 2. Motion tween of a virtual badminton racket driven by the right wrist and right forearm, which (more specifically, the position of the right 

wrist and the orientation of the right forearm) define a local frame. (a) and (c) are two keyframes. (b) are intermediate interpolated frames, where the 

positions and orientations of the racket are jointly determined by the transformed local frame, and the interpolated position displacement and angle 

displacement within the local frame. 

Other frameworks have incorporated human movements to 
guide object transformations. For example, a subject’s perfor
mance for manipulating physical puppets can be captured to 
transform corresponding 3D virtual puppets for making 3D 
animations [13]. Recent gesture-based frameworks [3, 26] 
first map a number of hand gestures or body gestures to the 
parameters of virtual objects (e.g. opacity, motion speed, etc.), 
which are then changed by gestures in real-time during live 
performance. Such methods would require gesture classifiers 
and thus are usually confined to limited types of gestures. In 
addition, these frameworks all require special hardware setups 
(e.g., Kinect) that are not necessarily often accessible to novice 
users. 

We present PoseTween, an interactive system that allows 
novice users to easily add visual effects driven by the mo
tion of a subject in an input video (Figure 1). The challenge 
of developing such a system is how to simplify the author
ing process while keeping the expressiveness of our system. 
We propose to model the visual effects as pose-driven tween 
animations of virtual objects. In this way, we can utilize the 
flexibility of human poses to drive the movements of virtual 
objects, thus reducing the authoring efforts. It also allows 
us to use keyframing animation of virtual objects to preserve 
motion properties native to the objects, thus precisely control
ling the movements of visual effects to achieve vivid results. 
While tween animation includes both motion tween and shape 
tween, in PoseTween human poses determine only the motion 
tween of virtual objects. Since the shape of objects often has 
non-trivial correlations with the motion of human poses, we 
let users author the desired shape tween effects when neces
sary. PoseTween can be used to add both 2D and 3D effects. 
However, since the majority of human actions is captured on 
videos by novice users, and 2D design assets are available 
in large volume, our current implementation focuses on 2D 
visual effects for simplicity. 

During editing, a user only needs to specify the properties 
of a virtual object, such as positions and scales, with respect 
to the subject’s movement at a few keyframes. The underly
ing body parts of the subject driving the object are automati
cally inferred according to the similarity between the spatial-
temporal changes of the object’s position and orientation and 
the changes in the subject’s pose. In this way, one or more 

body parts (joints and limbs) determine a local frame for the 
virtual object, as illustrated in Figure 2. The tween animation 
of the object is then jointly determined by the intermediate 
positions and orientations of the local frame formed by the 
driving body parts as a coarse control, and the interpolation of 
the object’s keyframe properties as a fine control. The coarse 
control via the local frame enables the motion path and speed 
of the object to roughly follow those of the body parts, while 
the fine control via displacements within the local frame facil
itates the relative motion between the object and human pose, 
such that the interaction between the object and the human 
pose looks natural. For example, in Figure 2, the right wrist 
and the right forearm determine the origin and the orienta
tion of the virtual racket’s local frame respectively, while the 
displacements of the racket within the local frame enable the 
racket to be not strictly aligned with the right forearm and thus 
avoid a rigid-looking effect. We provide a user interface for 
editing the keyframe properties while associating objects with 
human actions. 

Another challenge is to obtain accurate human poses from 
input videos. There exist deep learning-based human pose 
detection methods [7, 1] that support estimation of human 
poses from video frames and achieve state-of-the-art accuracy. 
However, even well pre-trained models may fail to accurately 
compute human poses in certain situations, e.g., when there 
exist occlusions and motion blurs. Even though there are auto
matic pose refinement methods that correct the initial human 
pose estimation results [10, 21], the refined human poses still 
contain errors that require further corrections. To address 
this problem, we provide a simple interface for modifying 
raw human pose estimation results. Upon correction of in
correct joint coordinates at certain video frames, the changes 
of joint positions are propagated to the neighboring frames 
accordingly. The experiment shows that this method is able 
to semi-automatically correct pose estimation errors in videos 
with only a small amount of user intervention. 

PoseTween differs from existing tracking-based systems (e.g., 
Octi and [26]) in that it allows a more flexible and controllable 
movement of virtual objects. This enables more complex 
interactions between an object and a subject, and increases the 
expressiveness of body-driven visual effects (see a comparison 
in Figure 8). Besides adding visual effects to human action 



Figure 3. Examples of PoseTween applications: (a) “basketball”: augmenting a subject’s dribbling action by making the animation of a virtual 

basketball driven by the right wrist; (b) “dancing”: adding visual effects to a dancing video; (c) “starwars”: adding visual effects to subjects imitating a 

movie clip. PoseTween generalizes to videos containing multiple subjects by inferring associations among the body parts of all the subjects; (d) “recycle”: 

making educational videos; (e) “sports”: augmenting sport tutorial videos with auxiliary markers to visualize athletes’ performance. 

videos, PoseTween can be creatively used for other purposes, 
e.g., making education animations and tutorial videos (see 
Figure 3). Our contributions are summarized as follows: (a) 
a new concept of pose-driven tween animations; (b) the first 
interactive system that allows novice users to easily author the 
movements of virtual objects interacting with human actions 
by making pose-driven tween animations; (c) an interface for 
modifying incorrect results produced by automatic human 
pose estimation methods. 

RELATED WORK 
Automatic Tweening. Automatic tweening is a basic function 
in many animation software, such as Adobe Flash and Adobe 
Animate, Synfig, Toon Boom, CACANi, etc. Manually editing 
the motion tween for complex motion in these existing tools 

would require skillful users. Even though such software pro
vides preset tweening methods, they often only cover common 
interpolation algorithms, such as linear, ease in/out, clamped, 
constant, etc. For novice users, it is tedious to create tween 
animations whose trajectories are well aligned with a subject’s 
movement with such preset tweening methods. 

The interpolation algorithms for tween animations have also 
been extensively studied. For example, the intermediate posi
tions of an object or a vertex can be determined by a high-order 
polynomial curve [6] or a spiral curve [35] to achieve a more 
complex motion path. Another group of algorithms has been 
proposed to interpolate stroke or object parameters instead of 
interpolating positions directly to reduce distortions [27, 11]. 
However, applying these interpolation algorithms might still 



result in unnatural animations when the desired motion path 
and morphing of objects are non-analytical, or when their parts 
move differently. Even though some works provide interactive 
tools that allow users to modify tween results by their pro
posed interpolation algorithms [37, 35], the editing processes 
might be laborious to novice users. 

Human-body Guided Animation. Several existing works 
introduce human factors in making animations. One group 
of methods allows users to map a few hand gestures [18] or 
body gestures [3, 26, 28] to the parameters of target animated 
objects in an authoring process, and the parameters can then 
be changed in real time by the authored gestures in a perfor
mance process. However, such gesture-based methods require 
a gesture recognition model, which prevents them from incor
porating new user-customized gestures easily. Since a user 
can only perform a limited number of gestures at one time, the 
parameters that can be changed simultaneously are thus also 
limited. In addition, even if the gestures are well-categorized 
in terms of expressiveness [26], they do not necessarily have 
semantic correlations with the parameters of objects to be 
animated and thus users need to memorize the customized 
mappings for live performance. 

Another group of methods builds alignments between a human 
skeleton and a virtual object, and transfer the body movement 
to the object directly. For example, [15] uses hand-drawn 
figures to drive 3D proxies, and [8, 16] use the movement of a 
human body to deform a 3D mesh. Such methods mainly deal 
with morphing of virtual elements, i.e., shape tween, while our 
work focuses on motion tween animations of virtual objects, 
which do not need to have similar structures with a human 
body for alignment. By contrast, our system is especially 
suitable for the situations when virtual objects have their own 
characteristic motions, while being related to human actions, 
which can thus be used as movement references for virtual 
objects (e.g., dribbling a basketball, as shown in Figure 3(a)). 

Animation Using Videos. There exist methods that gener
ate animations of a static object using motion cues extracted 
from videos containing a similar object. For example, Bregler 
et al. [4] retarget the motions from a traditionally animated 
cartoon to 3D models, 2D drawings and photographs. In 
LiveSketch [31], the motion at a group of control points is first 
extracted from a video and then transferred to a static sketch 
via the corresponding control points. In RealitySketch [32], 
the motions of objects are tracked to interactively animate 
augmented sketches in videos. Park et al. [24] and Willett 
et al. [36] use reference motions in human action videos to 
guide the deformation of virtual characters. These works make 
use of the similarity in structure between a source object in a 
reference video and target objects to be animated. In contrast, 
since our method uses the human motion in a video to drive 
the animation of an object rather than directly transferring the 
animation to the object, it only requires the object’s movement 
to be related to part of the human motion. 

Human Pose Estimation. Human pose estimation has been 
studied extensively for applications such as gaming, human-
computer interaction, health care, etc. Depth sensors like 
Microsoft Kinect enable easy detection of human poses in 

nearly real-time, but the detection is limited by physical limits 
like the angle of vision [19]. Motion capture (MoCap) [25] 
often uses multiple cameras or multiple types of sensors such 
as accelerometers and gyroscopes to obtain more accurate 
pose data. Their practical usage, however, is limited by the 
availability of the hardware devices in daily life. Pose estima
tion from images or videos acquired by monocular cameras 
has also been extensively studied. State-of-the-art human 
pose estimation methods can be generally classified into two 
categories: top-down approaches, such as G-MRI [23] and 
RMPE [9], and bottom-up approaches, such as OpenPose [7], 
DeeperCut [14] and other pictorial structure methods [2]. Au
tomatic human pose correction methods [29, 33, 10, 21] have 
been proposed to refine initial human pose estimation results 
as a post-processing step. These methods use neural networks 
to capture the joint distribution of images and errors in hu
man poses, and directly output refined poses. However, the 
refinement results are hardly perfect and thus need further 
corrections. Besides a few human pose annotation tools for 
building datasets [34], to the best of our knowledge, there is no 
existing tool that allows users to interactively modify human 
poses computed by pose estimation algorithms. 

USER INTERFACE 
Figure 4 shows our main user interface. The input to our sys
tem is a human action video and design assets of the virtual 
objects to be animated. Our system has three modes: keyframe 
editing (Figure 4), pose editing (Figure 5), and preview (Fig
ure 6). 

Figure 4. The user interface in the keyframe editing mode. (a) main 

canvas with a human action video as background; (b) pre-loaded virtual 

objects in media library; (c) a control panel for editing keyframe and 

animation properties; (d) timelines for virtual objects, where dark gray 

blocks represent keyframes. Green, blue (not shown here), light gray 

blocks represent single-joint driven, multiple-joint driven, and body in

dependent frames, respectively; (e) toolbox buttons, mainly used for 

switching between different modes. 



Pose Editing Mode 
We adopt lightweight OpenPose [22] in our implementation 
for computing human poses from videos. There are two types 
of error, namely, incorrect and missing, for joint coordinates 
by the pre-trained OpenPose model. We fill the missing joints 
caused by occlusions automatically using action coherence 
(see Section “Human Pose Processing”). Our system provides 
a tool for users to semi-automatically modify incorrect hu
man pose estimation results, as well as fine-tune filled missing 
joints. This modification is typically done as a pre-processing 
step prior to editing keyframes for motion tweening, but a 
user may switch to this mode from the other two modes when
ever necessary. In this mode, human joint coordinates are 
visualized by draggable circle joint handles. For joints with in
correct locations (e.g., left wrist and left elbow in Figure 5(a)), 
or missing joints that cannot be filled automatically (e.g., left 
eye and left ear at top-left corner of Figure 5(a)), the user 
may explicitly specify the correct joint locations by dragging 
the joint handles. Due to the coherence of human actions, 
incorrect joint coordinates often appear in consecutive frames. 
Instead of letting users manually modify the human pose in 
each frame, the changes made in one frame are propagated 
to neighboring frames using both the user input and the joint 
coordinate coherence constraints (see Section “Human Pose 
Processing” for more details). 

user-editable object properties include transformation center, 
position, orientation, scale and opacity. Table 1 lists how our 
interface allows users to edit each property. Other non-editable 
object properties include position displacement and angle dis
placement, which are computed automatically after association 
inference (see “Associations” later in this section). Among 
all the object properties, the position and the orientation are 
driven by human poses because they are physically related, 
while others are interpolated by user-specified interpolation 
algorithms (Table 2). 

Property Description 
transformation The default transformation center of an 
center object is its geometric center. The user can 

change it by dragging the center handle 
(the red circle in Figure 4(a)). 

position The position of an object is defined as the 
global position of its transformation center 
in a video frame. It is changed by directly 
dragging the object to a target position. 

orientation The orientation of an object is defined as 
and scale the orientation of its principle axis. The 

scale is the ratio of the user-specified size 
to the original size. To resize and rotate 
an object, the user may either intuitively 
manipulate the control points on the ob
ject, or precisely change the exact values 
in the control panel. 

opacity The opacity that moderates an object’s vis
ibility ranges from 0 to 1, where 0 repre
sents invisible. 

Figure 5. The user interface in the pose editing mode. (a) failed human 

pose detection with missing (left eye and left ear, shown at the top-left 

corner) or incorrect (left wrist and left elbow) joint locations; (b) a state

of-the-art automatic refinement method PoseFix [21] failed to correct 

the pose and even introduced new errors that need further corrections; 

(c) a user may specify the locations of missing joints (the handles for left 

eye and left ear are edited in this case) or modify incorrect joint locations 

by directly dragging joint handles; (d) the modified human pose using 

our UI. 

Keyframe Editing Mode 
In this mode, users manually edit the properties deciding the 
appearances and motions of the virtual objects at keyframes, 
with their timings dependent on the subject’s action in the 
video. The editing process follows the conventional timeline
based operations (as in most animation software), which are 
familiar to experienced animators and can be easily learned by 
novices. Please refer to the supplementary video for a sample 
creation process. Below we introduce three key elements in 
this mode: objects, keyframes, and associations. 

Objects. A virtual object is editable once it is dragged from the 
media library (Figure 4(b)) onto the canvas (Figure 4(a)). The 

Table 1. Editable properties of virtual objects supported by our inter

face. 

Property Description 
body depen- The user may select “body independent” 
dency to disable the association of an object with 

body parts between the current keyframe 
and the previous keyframe. 

single or By default each object is driven by a joint 
double and a limb. When an object is to be 
driving aligned with two joints that do not belong 
joints to a common limb the user may change 

this option to enable the association of an 
object with two joints. 

if-disabled The user may disable the animation of ob
jects between the current keyframe and 
the previous keyframe. 

interpolation The default interpolation method is linear. 
method Other options provided include ease in, 

ease out, logarithm, and auto-Bezier. 
Table 2. Properties of animation controls supported by our system. 

Keyframes. Each object instance has its corresponding track on 
the timeline, as shown in Figure 4(d). For temporal alignment, 
a user adds keyframes for each object at proper timings in 
the subject’s action. A keyframe is added to the timeline 
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either automatically when one of the object properties at a 
particular frame is changed, or manually by pressing a toolbox 
button. A shortcut menu on the timeline enables deleting 
or changing the timings of keyframes. Table 2 shows the 
animation properties to be specified at keyframes, namely, 
body dependency, single/multiple driving joints, if-disabled, 
and interpolation method. 

Associations. The association inference that finds the driving 
body parts of an object is conducted automatically when users 
edit the keyframes of an object (details in Section “Inference 
of Associations”). An alternative approach is to let users di
rectly indicate object-to-body associations, as in [26]. Such 
direct graphics-to-body associations might work well when 
an object is associated to a fixed body part during animation. 
However, when creating animations driven by different body 
parts during different periods (e.g., frequent changing from 
one hand to the other hand in juggling balls in Figure 1, chang
ing from hands to feet in the soccer example in Figure 10(d)), 
automatic inference of associations can reduce the amount of 
user intervention. It also has more potential than the manual 
specification of object-to-body associations in generalizing to 
mobile app creation scenarios, where the technical details (e.g., 
the human poses, keyframe animations) might be hidden from 
end users. For example, when authoring the movement of the 
basketball in Figure 3(a) in an entertainment mobile app, an 
end user may directly specify desired positions of the basket
ball at certain action keyframes without having to understand 
the principle that it is associated to and driven by the wrist. 
Thus we propose to automatically infer associations as initial 
guesses, and let users explicitly specify body associations only 
when the inference has errors. After association, the object’s 
non-editable keyframe properties (position displacement and 
angle displacement) are computed with respect to the local 
frame formed by the associated body parts. Specifically, the 
position displacement is the difference between the object’s 
position and the local frame origin, while the angle displace
ment is the orientation difference between the object and the 
local frame (see Figure 2). 

Preview Mode 
In the preview mode, a user may preview the details of an 
object’s joint and limb association. We provide two types of 
handles to visualize the association: position handle (a circle 
in light green in Figure 6) representing a driving joint, and ori
entation handle (a red dotted line in Figure 6(a)) representing 
a driving limb. Users may change the driving joint or limb 
by directly dragging the corresponding handles, which are 
snapped to the nearest newly specified joint or limb. 

METHODOLOGY 
In this section, we introduce the core algorithms behind our 
UI, including the propagation of joint coordinate changes to 
neighboring frames, inference of driving body parts of an 
object given the video and user-specified object properties, 
and finally the pose-driven tweening method. 

Human Pose Processing 
We first describe our method for correcting missing and incor
rect joint coordinates. One possible solution for filling missing 

Figure 6. The user interface in the preview mode. (a) the arrow is driven 

by a joint and a limb, visualized by a position handle in light green and 

an orientation handle as a dotted red line segment, respectively; (b) the 

barbell is driven by two joints, namely, the left and right wrists, visual

ized by two position handles. 

joints is to fit a spline curve to the non-missing joints [30]. 
However the actual joint trajectories might not follow the 
pre-defined type of spline curve. Enlightened by the recent 
success of autoregressive (AR) model in long-term 3D human 
prediction [38], we model the joint coordinate sequences by 
autoregressive models to make full use of the prior knowledge 
of the joint sequences. The main idea is to first use raw joint 
coordinates to build initial AR models for automatic filling of 
missing joints [20], and then fix possible errors by propagating 
manual corrections at one frame and the updated AR model 
parameters to neighboring frames. 

OpenPose returns the (x,y) coordinates of 18 joints. For 
simplicity, we denote a joint’s coordinate sequence as 
X1, X2, ...,XN for an N-frame video. The forward and 
backward AR models of a joint position sequence are 

w=1 fwXt−w,represented by Xt = ∑
W t ∈ [W + 1,N] and 

Xt = w=1 bwXt+w, t ∈ [1,N −W ], respectively, where fw∑
W 

and bw are the respective parameters of forward and backward 
autoregressive models of order W (W = 5 in our experiment). 
Given the raw human poses by OpenPose, we initialize a pair 
of forward and backward AR models for each joint, where 
the parameters fw and bw are estimated using non-missing 
joint coordinates by a least-squares method. The missing joint 
coordinates are then automatically filled using these initial 
models [20], as shown in Figure 7(a). When the non-missing 
joints are scarce to fit the initial models, users can still manu
ally specify the missing joint positions by joint handles. 

To reduce the amount of user intervention and to ensure the 
coherence of joint position sequences, we propagate user-
specified corrections at a certain frame in a temporal window 
of size 2×d + 1 (d = 2 in our experiment). See Figure 7(b) 
for an illustrated example. Specifically, we model the prop
agation process as a quadratic programming problem, where 
the user-specified input is used as a hard constraint in updating 
the neighboring joint locations, while satisfying the autore
gression model constraints to ensure coherence. Suppose the 
user modifies the joint position Xm into X̂m at time t = m. The 
forward AR model for the modified joint is first updated using 

′the sequence Xm−d−W , Xm−d−W+1, ...,Xm−d−1. Let f denotew 



the updated parameters. The objective is to minimize the dif- driven by a joint and a limb, we separately infer the joint 
ference between the updated joint positions in the neighboring that decides the origin of the object’s local frame, and the 
frames of Xm and the joint positions predicted by the updated limb that determines the orientation of the local frame; 
forward AR model: 

d W • O2: The deciding orientation of an object to be aligned 
′ 12 
vXm+u−vmin ∑
 1Xm+u − ∑
f , with body parts (limb and/or joint(s)) is often along the 

u=−d v=1 principle axis of the object. For example, the principle axis (1)
W of a badminton racket is to be aligned with the forearm (see 

′ˆ ˆXm = Xm, Xm =s.t. ∑
f Xm−v.v Figure 2). Thus the orientation of the principal axis of an 
v=1 

For the first W joints of the sequences, since the forward model 
is not defined, the backward AR model will be used as the 
constraint in Equation (1). 

Figure 7. A demonstration of our missing joint filling and pose correc

tion method on simulated random joint trajectories. (a) Filling missing 

values using the autoregressive model estimated from non-missing val

ues. For missing joints in the midst of the sequence, the predictions by 

the forward and backward AR models are averaged to fill the missing 

joints. Only the backward (forward) model prediction is used for pre

dicting missing joints at the beginning (end) where the forward (back

ward) model is not defined; (b) when the user manually specifies a joint 

position at one frame (as shown by the red dots) to fix incorrect joint po

sitions (the green dots), the neighboring frames are updated accordingly 

by a quadratic programming. 

Inference of Associations 
In this subsection, we present a method to infer the association 
of an object to body parts given their positions and orienta
tions in two consecutive keyframes. The output is indexes 
of an optimal joint and limb, or of a joint pair that drive the 
movement of the object. 

By analyzing videos of common human actions that drive 
movements of objects (e.g., daily living activities, sports, etc.), 
we make the following observations for designing the infer
ence method: 

• O1: The translation and rotation of an object might be 
driven independently. For example, in the juggling example 
in Figure 1, the balls constantly change their positions but 
their orientations hardly change. Therefore, if an object is 

object is used for limb inference; 

• O3: Objects are typically aligned with a joint and a limb. 
But some objects are to be aligned with two joints that do 
not belong to a common limb. For example, the orientation 
of a golf pole is largely determined by a wrist and a neck 
joint (see Figure 1). In such cases, since an object rotates 
with respect to the orientation angle of the vector formed by 
the two joints, we infer the two joints from such orientation 
angles. 

Denote the 18 2D joint coordinates for each frame com
puted by OpenPose as jt

i , t = 1,2, ...,N, i = 1,2, ...18. At 
each frame, the 18 joints form 19 semantic limbs with pre
defined positive directions, denoted as lt

m , t = 1,2, ...,N, m = 
1,2, ...19, and their correspond orientations αm, which are the t 

angular displacements of limb positive directions from the pos
itive x-axis direction in the pixel coordinates of video frames. 
Suppose two consecutive keyframes are at time k1 and k2 with 
k1 ≤ k2. Further denote the positions of the object at the two 
keyframes as sk1 and sk2 , and the orientations of the object 
αk1 and αk2 , respectively. Please see the notations in Figure 2 
for an illustration. Since the numbers of joints and limbs are 
small and fixed, the optimal joint or limb can be inferred by 
matching the user-specified object positions and orientations 
with those of the body parts. 

We first describe association inference for the case of an object 
being driven by a joint and a limb. The joint deciding the 
origin of the object’s local frame is inferred from both the 
spatial distances between the object and all the joints at k1 
and k2, and the motions represented by their position changes 
between k1 and k2. Specifically, the driving joint is inferred 
by: 

i ∗ = argmin 1 jk
i 

1 
− sk112 + 1 jk

i 
2 
− sk212 

i (2) 
+ 1( jk

i 
2 
− jk

i 
1
) − (sk2 − sk1)12. 

Similarly, we infer the limb deciding the orientation of the 
object’s local frame from the similarity in both the orientation 
of the object and all the limbs at k1 and k2, and their orientation 
changes between k1 and k2: 

    

∗ m = argmin  αm −αk1
 +  α

m −αk2
 

k1 k2 
m (3)

  

 +  (αm −α
m) − (αk2 −αk1) .k2 k1

After inference of association, we compute the object’s posi
tion displacement and angle displacement in the local frames 
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at the two keyframes. The displacements are given by 

δ skp 
= skp 

− ji ∗ ,kp 
(4) 

δαkp 
= αkp 

−α
m ∗ , p = 1,2.kp 

The joint pair (i ∗ 1, i 
∗ 
2) for virtual objects driven by two joints 

are inferred similarly by matching the object orientation with 
the orientation angles of vectors of all joint pairs. Then we set 
the origin of the object’s local frame as the midpoint of the 
two joints. 

The above inference method might fail when the object has 
a large displacement with the target driving joint, or when 
multiple pairs of joints have similar orientations (see the dis
cussions on failure cases in Section “Evaluations”). The user 
may then interactively use the position handle and orientation 
handle to overwrite the inference results. 

Interpolation 
The position and orientation of an object in an intermediate 
frame are computed as a combination of the intermediate po
sition and orientation of the local frame, and the interpolated 
position and angle displacements in the local frame. Specifi
cally, at time t = τ between keyframes k1 and k2, the position 
and orientation of the object driven by a joint and a limb are 
given by 

ji ∗ sτ = + F(δ sk1 ,δ sk2),τ (5) 
ατ = ατ 

m ∗ + F(δαk1 ,δαk2). 

Similarly, the position and orientation of the object driven by 
two joints are computed as follows: 

i ∗ i ∗ 

sτ = ( jτ 
1 + jτ 

2)/2+ F(δ sk1 ,δ sk2), (6)
i ∗ 1,i 

∗ 

ατ = ατ 
2 + F(δαk1 ,δαk2), 

where F(•) is one of the user-specified preset interpolation 
algorithms in Table 2. 

EVALUATIONS 
In this section, we show the results of a user study evaluating 
the effectiveness of PoseTween, and the results of quantita
tive experiments evaluating the accuracies of the human pose 
processing and the association inference methods. 

User Evaluations 
We conducted a user study to evaluate the improvement of 
our system in using human poses over the traditional tween 
animation without using human poses, with respect to sim
plifying the authoring process and improving the quality of 
adding visual effects to human action videos for novice users. 

Apparatus. Our user interface was developed with Python 3.6 
on a laptop (Intel i5 @2.7GHz, 8GB RAM) running macOS. 
The lightweight OpenPose ran at 9∼15 fps on this PC. We 
captured action videos by a mobile phone camera with 1080p 
resolution at 30 fps. 

Participants. 12 university students (a1∼a12, aged 24∼30, 3 
female) were invited to participate in the user study. Among 

Figure 8. A comparison of PoseTween, baseline method (using tradi

tional tween animation), and tracking-only method (i.e., simply letting 

the basketball track the wrist) on selected intermediate frames. 

them, 9 had no animation background while 3 had intermediate 
experience in making animations (on a 1-10 point rating, a6 
rated 7 with Blender and 3ds MAX, a8 rated 6 with Toon 
Boom, a10 rated 4 with Adobe Flash). Each participant was 
asked to perform exploitation and exploration tasks, and to 
complete a questionnaire at the end of the study. 

Exploitation Task 
The goal of the exploitation task was to evaluate the ease 
of use and the satisfactory of outcome of our system by a 
set of fixed tasks. For comparison, we prepared a baseline 
system by removing the pose-driven functions from our user 
interface such that the baseline system supports making tween 
animation of objects only by interpolation algorithms, similar 
to tweening tools in existing animation software. We proposed 
the following hypotheses: 

• H1. Using PoseTween to make tween animations of objects 
with respect to human actions simplifies the authoring pro
cess. Specifically, PoseTween requires less creation time 
(H1a) and fewer keyframes (H1b) than the baseline system; 

• H2. PoseTween yields animations of objects that appear 
more naturally interacting with human actions than the base
line system. 

During training, we first gave a detailed tutorial on the op
erations of our system as well as the baseline system. The 
participants then tried freely to get familiar with the two sys
tems. After that, each participant was asked to reproduce three 
target augmented videos given human action videos and ob
ject design assets to animate using both our system and the 
baseline system (i.e., 2 methods × 3 animations). The order of 
the methods was counterbalanced, and the order of the tasks 
was randomized to reduce the learning effects. 
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The three videos chosen were: (1) “badminton”, animating 
a racket driven by a wrist and a forearm (a joint and a limb), 
which is a medium complex motion involving translation and 
rotation; (2)“weight lifting”, animating a barbell driven by 
two wrists (two joints) to test animating using the multi-joint 
functionality; (3)“arrow”, animating an arrow and a bow (two 
objects) driven by two wrists to test animating multiple ob
jects. 

The creation time and the number of keyframes needed for 
making each animation are shown in Figure 9. Paired t-tests be
tween PoseTween and the baseline system on the creation time 
and the number of keyframes for each animation show that, ex
cept for the creation time for “weight lifting” (p= 0.5501, H1a 
rejected), PoseTween required significantly less creation time 
and fewer keyframes than the baseline system (p < 0.05, H1a 
and H1b supported). The movement of the barbell in “weight 
lifting” was relatively simple though it involved two joints. 
Since there was no complex object transformation, in the base
line system the participants only needed to add keyframes to 
adapt the barbell’s speed to that of the two wrists. The most 
significant differences in the creation time and the number of 
keyframes occurred in the “badminton” action (p = 0.0105 
and p = 1.87 × 10−5, respectively), in which the complex 
motion path and speed variation of the racket required the 
participants to add more keyframes in the baseline system to 
achieve such a movement. In contrast, with PoseTween, the 
body movements of the subject provided more motion guid
ance to the racket. This result indicates that our system has 
clear advantages especially when the motion of an object is 
complex. This is confirmed by a8, who had used Toon Boom, 
commenting on our system: “It can easily handle some com
plex movements (e.g., rotating and translating simultaneously), 
which are difficult with common interpolation algorithms.” 

For the creation time we also record the respective times 
needed for keyframe editing, previewing videos and anima
tion results, and modifying object animations and association 
errors. There is no significant difference in previewing and 
modifying times between PoseTween and the the baseline sys
tem, while PoseTween requires significantly less keyframe 
editing time in all of the three actions ( p = 0.0005 for “bad
minton”, p = 0.026 for “weight-lifting” and p = 0.0003 for 
“arrow”). The keyframe editing time in PoseTween accounts 
for 35.2% of the total creation time on average, compared with 
60.5% in the baseline system. Even though the users needed to 
spend a certain amount of time previewing the videos and mod
ifying results during creation, PoseTween effectively reduced 
the keyframe editing time. 

To verify the improvement in the appearance of visual effects 
using PoseTween compared with the baseline system, we let 
the participants rate the level of satisfaction towards the videos 
augmented with visual effects made by PoseTween and the 
baseline system separately (1 is the least satisfied and 10 is 
the most satisfied). The satisfaction level of augmented videos 
made by PoseTween (Mean=9.3, SD=0.78) was significantly 
higher than those made with the baseline system (Mean=6.0, 
SD=1.94) (p<0.001), supporting H2. 
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Figure 9. Comparisons of average creation time and average number 

of keyframes required for the three actions using PoseTween and the 

baseline method. The stacked bars in (a) show from bottom to top the 

average times for keyframe editing, previewing and modifying, respec

tively. 

The participants were asked to rate PoseTween and the baseline 
system in terms of the ease of use in the questionnaire, includ
ing a standard System Usability Scale (SUS) [5] for each of the 
two systems. The SUS score of PoseTween was 80.2 compared 
with 69.5 of the baseline system. Besides the SUS, the partici
pants were also explicitly asked in the questionnaire whether 
they found PoseTween has simplified the editing process and 
achieved more natural-looking video results by a 10-point rat
ing (1 is strongly disagree and 10 is strongly agree), resulting 
in the average scores of 8.5 (SD=0.81) and 8.7 (SD=1.1), re
spectively. Participant a6, who had experience using Blender 
and 3ds MAX, verbally commented that he preferred to use 
PoseTween to edit object animations related to human actions, 
and that he was able to easily adapt his previous skills to using 
PoseTween. 

Exploration Task 
The goal of this task was to test the expressiveness of our 
system. In this task, each participant was asked to think of a 
favourite scenario that involves one or more objects driven by 
a human action and to produce it using PoseTween. The partic
ipants then performed the actions, which were video-recorded, 
and prepared the design assets of objects to be animated. Even 
though our system does not support live preview, the partic
ipants’ performances were not influenced by the absence of 
actual objects, since they were aware that they could adapt 
the objects to their actions in the editing process. Figure 10 
shows several representative animations created by the partici
pants. Most participants came up with a sport action, such as 
playing soccer and golf, or an action of a subject manipulating 
a tool, such as a fork and an axe. In the creation process, 8 
participants made use of both the body-independent function 
and the body-driven function, making the objects alternatively 
being driven by a body part and move independently. In the 
action “playing shuttlecock” (Figure 10(e)), the shuttlecock 
moves independently of body parts in most of the frames, in 
which the participant edited the movement of the shuttlecock 
with respect to the timings in the subject’s movement. In this 
case, the object is hardly driven by the subject’s movement, 
and thus the creation process with PoseTween would approach 
that with the baseline system. Even though PoseTween mainly 



Figure 10. Video augmentation results from the exploration task. (a) “knight”: 25 keyframes, 9min 31s; (b) “bowling”: 13 keyframes, 10min 51s; (c) 

“cutting tree”: 14 keyframes, 14min 29s; (d) “soccer”: 13 keyframes, 2min 07s; (e) “playing shuttlecock”: 23 keyframes, 5min 49s. 

targets at animating objects interacting with human actions, 
five of the creation scenarios involve interactions between vir
tual objects (e.g. bowling ball-versus-pins and axe-versus-tree 
in Figure 10(b)(c)). 

User Feedback 
In the study, all the participants were able to learn to use 
our system quickly. During training, all of them took less 
than 8 minutes to get familiar with the operations in both sys
tems. The participants commented favorably about our system. 
Even the participants with little animation experience found 

PoseTween to be a useful tool for adding visually appealing 
effects without having to learn a lot of background knowledge 
on making animations. 

a3: “The tool is easy and intuitive to use. I do not need to 
fine-tune keyframes frequently.” 

a5: “... It reduces manual operations, and makes the results 
more realistic especially for more complex motions and longer 
videos.” 



a2: “A very nice tool, easy to operate the objects to make them 
interact with the human body, to make funny and meaningful 
videos. I would prefer to use it in an instant message chat in 
the future.” 

a11: “The body-driven function provides very natural effects 
when an object has a close interaction with the human, espe
cially when the motion is complex or the interaction between 
the human and object is not just mounted to a static point.” 

a1: “... I’m looking forward to using the system in the future.” 

A participant also proposed suggestions and possible improve
ments: 

a3: “In daily life scenarios, objects are often driven by hands, 
thus providing templates of pre-set hand associations and 
build-in visual effects for common object categories may be 
more convenient for most common users.” 

Human Pose Processing 
To quantitatively evaluate the effectiveness of our pose editing 
tool in its accuracy and ability to reduce the amount of user 
intervention, we collected the statistics of correcting errors in 
human poses estimated by lightweight OpenPose. Ideally this 
evaluation would have been conducted by the invited partic
ipants. But since some joints remotely related to the virtual 
objects (e.g., ears, nose) might not require corrections for the 
animation creation processes, and both the joint correction 
process and the measurements in the experiment are objective, 
we, the designer of the experiment, modified the human poses 
instead of user study participants for a thorough evaluation of 
our tool. The videos selected for the experiment included both 
simple (“arrow”, “weight lifting” and “golf”) and complex 
(“badminton” and “boxing”) actions, covering a large variety 
of joint trajectories. For each video we counted the number of 
errors by OpenPose while manually correcting each error as 
ground-truth joint positions for the later experiments. 

In the first experiment we evaluate the ability of our tool in 
reducing the amount of user intervention. We corrected the 
human poses in the same selected videos using our tool, and 
recorded the numbers of corrections by joint handles, and the 
time needed, as shown in Table 3. Since the manual correc
tion process also included fine-tuning the automatically filled 
results, there might be more manual corrections than incorrect 
joints by OpenPose, as in the action “boxing”. In “boxing”, 
since the wrist joints have large speed and position variations, 
the initialized AR models for the wrists failed in predicting 
the precise occluded wrist positions. For all of the five videos, 
the numbers of manual corrections using our tool were far less 
than the total numbers of missing and incorrect joints, and the 
correction times were far less than manual corrections. These 
indicate that our tool is able to semi-automatically correct the 
joint coordinates produced by pose estimation methods with a 
small amount of user intervention. 

In the second experiment we evaluate the accuracy of our hu
man pose correction method. We compared the joint position 
errors with respect to the ground-truth positions among the 
raw pose positions by lightweight OpenPose, the Catmull-
Rom interpolation method [30], a state-of-the-art automatic 

pose refinement method PoseFix [21], and our semi-automatic 
method without and with manual collection, as shown in Ta
ble 4. In implementing the Catmull-Rom interpolation method 
for comparison, we filled the missing joints by interpolating 
all the non-missing joints. This interpolation method gener
ally performed well but failed to recover the complex wrist 
trajectories in “boxing”. Since PoseFix does not involve an 
error detection process, its refinement results sometimes mis
takenly overwrote correct joint positions, and contained errors 
that needed further corrections (see Figure 5(b)). In contrast, 
our tool achieved a reasonable accuracy by correcting only a 
portion of incorrect joints. 

Association Inference 
To evaluate the effectiveness of our association inference 
method, in the exploitation task we recorded the numbers of 
false joint and limb associations, as shown in Table 5. These 
false associations appeared in a few common situations. In the 
“weight-lifting” action, the keyframe with the subject having 
a pose in Figure 6(b) caused the association errors, where 
the barbell was associated with two shoulders instead of two 
wrists. This is largely because the shoulders have similar ori
entation angles to those of the two wrists. However, since 
these two pairs of joints had similar orientation angles, the 
false associations did not noticeably influence the animation 
results even when the participants did not correct them. The 
“arrow” action had the least association errors, mostly because 
this action did not involve large rotations, and between every 
two keyframes of the arrow only the driving body parts had 
obvious movements while others remained stationary. In the 
failure cases, a participant let the subject hold the front end 
of the arrow, where the transformation center of the arrow 
was closer to the left elbow than the left wrist, resulting in 
the arrow driven by the left elbow and rotated with the left 
shoulder. Since the position displacement between the arrow 
and the left elbow was nearly constant in the translation of the 
arrow, false associations also did not cause noticeable artifacts 
in this action. For the “badminton” action, the inference of 
association failed when the user-specified orientation of the 
racket differed much from the orientation of the right forearm. 
Since the orientation of the racket was largely determined by 
the orientation of the forearm, false associations would cause 
obvious artifacts in the animation results. In the user study, all 
the participants were able to identify the false joint or limb 
associations and correct the associations accordingly. 

LIMITATIONS 
As discussed previously, our current implementation supports 
2D visual effects only. To achieve 3D rotation effects with 
our current implementation, users can only use 2D scaling 
of objects to simulate the effects (Figure 11). This limitation 
might be addressed by introducing view perspectives in the 
animation of 3D assets. By jointly estimating the camera pose 
and human pose from videos [17], the rendered positions and 
orientations of the objects are determined by both the human 
pose and camera pose. 

Our current system does not handle occlusions between human 
bodies and objects. Users have to manually handle occlusions 
by setting the objects to be invisible when they should be 
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Ground Truth Pose Correction 

video name # frames # missing # incorrect time (s) # correction time (s) 

arrow 
badminton 
boxing 
weight lifting 
golf 

201 
119 

83 
386 

71 

172 
107 
103 

24 
69 

45 
21 

8 
27 
11 

1196.27 
941.21 
821.16 

1528.09 
677.61 

15 
11 
13 
10 

6 

125.22 
154.74 
139.25 
296.90 

85.89 

Table 3. Statistics of correcting human poses using our tool. Ground truth includes the total number of frames in each video, number of missing and 

incorrect joint positions in the raw OpenPose results, and time for manually correcting each error. During correction we record the number of manual 

corrections and correction times. 

Raw Catmull PoseFix Ours(w/o) Ours 
arrow 27.25 9.45 44.75 2.87 2.14 

badminton 12.93 6.90 30.87 3.10 1.26 

boxing 53.71 34.87 59.65 12.89 4.57 

lifting 15.43 7.02 18.37 0.54 0.42 

golf 25.62 8.73 23.18 1.73 0.69 

Table 4. A comparison of average joint location errors per frame (Eu

clidean distance with ground-truth joint locations) between raw human 

poses [22], the Catmull-Rom spline interpolation, the automatic pose re

finement method PoseFix [21], and our semi-automatic pose correction 

method (Ours(w/o): without manual correction, errors of our missing 

joint filling method; Ours: errors after manual correction). (unit: pixel.) 

badminton arrow weight-lifting 

joint limb joint limb joint pair 

# inference 79 79 74 74 116 

# failure 6 10 3 4 20 

Table 5. The total numbers of association inferences in the exploitation 

task for each action, and the numbers of failures by automatic inference. 

Figure 11. Limitation: (a)(c) tweening results involving only object 

rotation in the image plane; (b)(d) results using 2D scaling to simulate 

object rotations perpendicular to the image plane. 

occluded. This might be addressed by segmenting the subjects 
in video frames [12] to support layered animations. 

CONCLUSION AND FUTURE WORK 
In this paper we presented the first system that allows novice 
users to easily add visual effects to human action videos by 
creating pose-driven tween animations of virtual objects. We 
designed a user interface that allows users to edit keyframe 
properties to animate the objects with respect to human actions, 
and designed an association inference method to associate the 

objects to driving body parts automatically. Our pose-driven 
method utilizes the flexibility of human body to both reduce 
users’ efforts in the visual effect authoring process and achieve 
visually appealing results. We also provided a tool for users 
to semi-automatically modify human poses computed by pose 
estimation algorithms. 

We have developed only a prototype of PoseTween. In the 
future we would like to explore more functions to make 
PoseTween more powerful. As discussed in Section “Lim
itations”, by incorporating 3D human poses and 3D objects, 
PoseTween can be generalized to editing keyframes in 3D 
context with depth and perspectives to generate more real
istic tween animations. In addition, currently users need to 
manually find the keyframes of human actions for timings for 
editing the objects’ keyframe properties. There are existing 
works that detect keyframes in human action videos automat
ically [39]. Our system has the potential to further simplify 
the editing process by suggesting timings according to the 
keyframes of human actions. In PoseTween, the keyframes of 
objects are associated with the keyframes of human actions, 
it would thus also be interesting to make human action-based 
visual effect templates, which would be useful for building 
libraries for entertainment applications. After a user makes a 
tween animation, the authored keyframe properties are saved 
as an animation preset. When another user performs a simi
lar action, the preset animation can be adaptively applied to 
generate an augmented new video automatically. 
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