
PoseTween: Pose-driven Tween Animation

Jingyuan Liu Hongbo Fu∗ Chiew-Lan Tai

Hong Kong University of City University of Hong Kong Hong Kong University of
Science and Technology hongbofu@cityu.edu.hk Science and Technology

Figure 1. We present PoseTween, a system for allowing novice users to easily create pose-driven tween animation of virtual objects.

ABSTRACT
Augmenting human action videos with visual effects often
requires professional tools and skills. To make this more ac
cessible by novice users, existing attempts have focused on
automatically adding visual effects to faces and hands, or let
virtual objects strictly track certain body parts, resulting in
rigid-looking effects. We present PoseTween, an interactive
system that allows novice users to easily add vivid virtual
objects with their movement interacting with a moving subject
in an input video. Our key idea is to leverage the motion of
the subject to create pose-driven tween animations of virtual
objects. With our tool, a user only needs to edit the proper
ties of a virtual object with respect to the subject’s movement
at keyframes, and the object is associated with certain body
parts automatically. The properties of the object at intermedi
ate frames are then determined by both the body movement
and the interpolated object keyframe properties, producing
natural object movements and interactions with the subject.
We design a user interface to facilitate editing of keyframes
and previewing animation results. Our user study shows that
PoseTween significantly requires less editing time and fewer
keyframes than using the traditional tween animation in mak
ing pose-driven tween animations for novice users.

Author Keywords
Tween animation; human pose; interpolation; interface.

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’20, October 20–23, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.

https://doi.org/10.1145/3379337.3415822

CCS Concepts
•Human-centered computing → Human computer inter
action (HCI); Graphics input devices; User studies;

INTRODUCTION
Adding visual effects to enhance videos has become popular
among ordinary mobile users nowadays. Professional tools for
adding visual effects, such as Adobe Premiere and Foundry
Nuke, typically require trained skills. The advancement of
real-time face detection and tracking technologies has recently
enabled various camera mobile apps that support live face
stickers (e.g., Sweet Snap app supports 2800 live stickers and
are being used by over 100 million users). In such recreational
apps, the pre-defined visual effects are aligned to track facial
parts, which have a fixed structure. The recent efforts toward
real-time human pose estimation (such as OpenPose [7] and
DensePose [1]) bring similar opportunities to adding visual
effects (pose stickers) to augment human body actions. How
ever, due to the high degrees of freedom of a human pose,
designing pose stickers would require a specialized tool.

There only exist few systems, such as Octi and Microsoft’s
Story Remix, which allow adding visual effects (texts and vir
tual objects) on or around a human body. However, such sys
tems support only effects by tracking-based methods, which
make virtual objects strictly follow the movement of the entire
body or certain body parts, thus failing to capture the actual
transformations of different objects. For example, to augment
a subject’s dribbling a basketball, simply letting the basketball
track the subject’s hand would fail to produce the bounce-and
back effect (see Figure 3(a)). Even though the movements of
virtual objects are driven by human actions, they may have
their own motion paths and speed variations. To achieve vivid
effects in the interaction with human actions, the movements
of virtual objects need to be precisely controlled. In this paper,
we design a system that takes a step towards this emerging
content creation scenario.

http:speedvariations.To
https://doi.org/10.1145/3379337.3415822
mailto:permissions@acm.org
http:skills.To

Figure 2. Motion tween of a virtual badminton racket driven by the right wrist and right forearm, which (more specifically, the position of the right

wrist and the orientation of the right forearm) define a local frame. (a) and (c) are two keyframes. (b) are intermediate interpolated frames, where the

positions and orientations of the racket are jointly determined by the transformed local frame, and the interpolated position displacement and angle

displacement within the local frame.

Other frameworks have incorporated human movements to
guide object transformations. For example, a subject’s perfor
mance for manipulating physical puppets can be captured to
transform corresponding 3D virtual puppets for making 3D
animations [13]. Recent gesture-based frameworks [3, 26]
first map a number of hand gestures or body gestures to the
parameters of virtual objects (e.g. opacity, motion speed, etc.),
which are then changed by gestures in real-time during live
performance. Such methods would require gesture classifiers
and thus are usually confined to limited types of gestures. In
addition, these frameworks all require special hardware setups
(e.g., Kinect) that are not necessarily often accessible to novice
users.

We present PoseTween, an interactive system that allows
novice users to easily add visual effects driven by the mo
tion of a subject in an input video (Figure 1). The challenge
of developing such a system is how to simplify the author
ing process while keeping the expressiveness of our system.
We propose to model the visual effects as pose-driven tween
animations of virtual objects. In this way, we can utilize the
flexibility of human poses to drive the movements of virtual
objects, thus reducing the authoring efforts. It also allows
us to use keyframing animation of virtual objects to preserve
motion properties native to the objects, thus precisely control
ling the movements of visual effects to achieve vivid results.
While tween animation includes both motion tween and shape
tween, in PoseTween human poses determine only the motion
tween of virtual objects. Since the shape of objects often has
non-trivial correlations with the motion of human poses, we
let users author the desired shape tween effects when neces
sary. PoseTween can be used to add both 2D and 3D effects.
However, since the majority of human actions is captured on
videos by novice users, and 2D design assets are available
in large volume, our current implementation focuses on 2D
visual effects for simplicity.

During editing, a user only needs to specify the properties
of a virtual object, such as positions and scales, with respect
to the subject’s movement at a few keyframes. The underly
ing body parts of the subject driving the object are automati
cally inferred according to the similarity between the spatial-
temporal changes of the object’s position and orientation and
the changes in the subject’s pose. In this way, one or more

body parts (joints and limbs) determine a local frame for the
virtual object, as illustrated in Figure 2. The tween animation
of the object is then jointly determined by the intermediate
positions and orientations of the local frame formed by the
driving body parts as a coarse control, and the interpolation of
the object’s keyframe properties as a fine control. The coarse
control via the local frame enables the motion path and speed
of the object to roughly follow those of the body parts, while
the fine control via displacements within the local frame facil
itates the relative motion between the object and human pose,
such that the interaction between the object and the human
pose looks natural. For example, in Figure 2, the right wrist
and the right forearm determine the origin and the orienta
tion of the virtual racket’s local frame respectively, while the
displacements of the racket within the local frame enable the
racket to be not strictly aligned with the right forearm and thus
avoid a rigid-looking effect. We provide a user interface for
editing the keyframe properties while associating objects with
human actions.

Another challenge is to obtain accurate human poses from
input videos. There exist deep learning-based human pose
detection methods [7, 1] that support estimation of human
poses from video frames and achieve state-of-the-art accuracy.
However, even well pre-trained models may fail to accurately
compute human poses in certain situations, e.g., when there
exist occlusions and motion blurs. Even though there are auto
matic pose refinement methods that correct the initial human
pose estimation results [10, 21], the refined human poses still
contain errors that require further corrections. To address
this problem, we provide a simple interface for modifying
raw human pose estimation results. Upon correction of in
correct joint coordinates at certain video frames, the changes
of joint positions are propagated to the neighboring frames
accordingly. The experiment shows that this method is able
to semi-automatically correct pose estimation errors in videos
with only a small amount of user intervention.

PoseTween differs from existing tracking-based systems (e.g.,
Octi and [26]) in that it allows a more flexible and controllable
movement of virtual objects. This enables more complex
interactions between an object and a subject, and increases the
expressiveness of body-driven visual effects (see a comparison
in Figure 8). Besides adding visual effects to human action

Figure 3. Examples of PoseTween applications: (a) “basketball”: augmenting a subject’s dribbling action by making the animation of a virtual

basketball driven by the right wrist; (b) “dancing”: adding visual effects to a dancing video; (c) “starwars”: adding visual effects to subjects imitating a

movie clip. PoseTween generalizes to videos containing multiple subjects by inferring associations among the body parts of all the subjects; (d) “recycle”:

making educational videos; (e) “sports”: augmenting sport tutorial videos with auxiliary markers to visualize athletes’ performance.

videos, PoseTween can be creatively used for other purposes,
e.g., making education animations and tutorial videos (see
Figure 3). Our contributions are summarized as follows: (a)
a new concept of pose-driven tween animations; (b) the first
interactive system that allows novice users to easily author the
movements of virtual objects interacting with human actions
by making pose-driven tween animations; (c) an interface for
modifying incorrect results produced by automatic human
pose estimation methods.

RELATED WORK
Automatic Tweening. Automatic tweening is a basic function
in many animation software, such as Adobe Flash and Adobe
Animate, Synfig, Toon Boom, CACANi, etc. Manually editing
the motion tween for complex motion in these existing tools

would require skillful users. Even though such software pro
vides preset tweening methods, they often only cover common
interpolation algorithms, such as linear, ease in/out, clamped,
constant, etc. For novice users, it is tedious to create tween
animations whose trajectories are well aligned with a subject’s
movement with such preset tweening methods.

The interpolation algorithms for tween animations have also
been extensively studied. For example, the intermediate posi
tions of an object or a vertex can be determined by a high-order
polynomial curve [6] or a spiral curve [35] to achieve a more
complex motion path. Another group of algorithms has been
proposed to interpolate stroke or object parameters instead of
interpolating positions directly to reduce distortions [27, 11].
However, applying these interpolation algorithms might still

result in unnatural animations when the desired motion path
and morphing of objects are non-analytical, or when their parts
move differently. Even though some works provide interactive
tools that allow users to modify tween results by their pro
posed interpolation algorithms [37, 35], the editing processes
might be laborious to novice users.

Human-body Guided Animation. Several existing works
introduce human factors in making animations. One group
of methods allows users to map a few hand gestures [18] or
body gestures [3, 26, 28] to the parameters of target animated
objects in an authoring process, and the parameters can then
be changed in real time by the authored gestures in a perfor
mance process. However, such gesture-based methods require
a gesture recognition model, which prevents them from incor
porating new user-customized gestures easily. Since a user
can only perform a limited number of gestures at one time, the
parameters that can be changed simultaneously are thus also
limited. In addition, even if the gestures are well-categorized
in terms of expressiveness [26], they do not necessarily have
semantic correlations with the parameters of objects to be
animated and thus users need to memorize the customized
mappings for live performance.

Another group of methods builds alignments between a human
skeleton and a virtual object, and transfer the body movement
to the object directly. For example, [15] uses hand-drawn
figures to drive 3D proxies, and [8, 16] use the movement of a
human body to deform a 3D mesh. Such methods mainly deal
with morphing of virtual elements, i.e., shape tween, while our
work focuses on motion tween animations of virtual objects,
which do not need to have similar structures with a human
body for alignment. By contrast, our system is especially
suitable for the situations when virtual objects have their own
characteristic motions, while being related to human actions,
which can thus be used as movement references for virtual
objects (e.g., dribbling a basketball, as shown in Figure 3(a)).

Animation Using Videos. There exist methods that gener
ate animations of a static object using motion cues extracted
from videos containing a similar object. For example, Bregler
et al. [4] retarget the motions from a traditionally animated
cartoon to 3D models, 2D drawings and photographs. In
LiveSketch [31], the motion at a group of control points is first
extracted from a video and then transferred to a static sketch
via the corresponding control points. In RealitySketch [32],
the motions of objects are tracked to interactively animate
augmented sketches in videos. Park et al. [24] and Willett
et al. [36] use reference motions in human action videos to
guide the deformation of virtual characters. These works make
use of the similarity in structure between a source object in a
reference video and target objects to be animated. In contrast,
since our method uses the human motion in a video to drive
the animation of an object rather than directly transferring the
animation to the object, it only requires the object’s movement
to be related to part of the human motion.

Human Pose Estimation. Human pose estimation has been
studied extensively for applications such as gaming, human-
computer interaction, health care, etc. Depth sensors like
Microsoft Kinect enable easy detection of human poses in

nearly real-time, but the detection is limited by physical limits
like the angle of vision [19]. Motion capture (MoCap) [25]
often uses multiple cameras or multiple types of sensors such
as accelerometers and gyroscopes to obtain more accurate
pose data. Their practical usage, however, is limited by the
availability of the hardware devices in daily life. Pose estima
tion from images or videos acquired by monocular cameras
has also been extensively studied. State-of-the-art human
pose estimation methods can be generally classified into two
categories: top-down approaches, such as G-MRI [23] and
RMPE [9], and bottom-up approaches, such as OpenPose [7],
DeeperCut [14] and other pictorial structure methods [2]. Au
tomatic human pose correction methods [29, 33, 10, 21] have
been proposed to refine initial human pose estimation results
as a post-processing step. These methods use neural networks
to capture the joint distribution of images and errors in hu
man poses, and directly output refined poses. However, the
refinement results are hardly perfect and thus need further
corrections. Besides a few human pose annotation tools for
building datasets [34], to the best of our knowledge, there is no
existing tool that allows users to interactively modify human
poses computed by pose estimation algorithms.

USER INTERFACE
Figure 4 shows our main user interface. The input to our sys
tem is a human action video and design assets of the virtual
objects to be animated. Our system has three modes: keyframe
editing (Figure 4), pose editing (Figure 5), and preview (Fig
ure 6).

Figure 4. The user interface in the keyframe editing mode. (a) main

canvas with a human action video as background; (b) pre-loaded virtual

objects in media library; (c) a control panel for editing keyframe and

animation properties; (d) timelines for virtual objects, where dark gray

blocks represent keyframes. Green, blue (not shown here), light gray

blocks represent single-joint driven, multiple-joint driven, and body in

dependent frames, respectively; (e) toolbox buttons, mainly used for

switching between different modes.

Pose Editing Mode
We adopt lightweight OpenPose [22] in our implementation
for computing human poses from videos. There are two types
of error, namely, incorrect and missing, for joint coordinates
by the pre-trained OpenPose model. We fill the missing joints
caused by occlusions automatically using action coherence
(see Section “Human Pose Processing”). Our system provides
a tool for users to semi-automatically modify incorrect hu
man pose estimation results, as well as fine-tune filled missing
joints. This modification is typically done as a pre-processing
step prior to editing keyframes for motion tweening, but a
user may switch to this mode from the other two modes when
ever necessary. In this mode, human joint coordinates are
visualized by draggable circle joint handles. For joints with in
correct locations (e.g., left wrist and left elbow in Figure 5(a)),
or missing joints that cannot be filled automatically (e.g., left
eye and left ear at top-left corner of Figure 5(a)), the user
may explicitly specify the correct joint locations by dragging
the joint handles. Due to the coherence of human actions,
incorrect joint coordinates often appear in consecutive frames.
Instead of letting users manually modify the human pose in
each frame, the changes made in one frame are propagated
to neighboring frames using both the user input and the joint
coordinate coherence constraints (see Section “Human Pose
Processing” for more details).

user-editable object properties include transformation center,
position, orientation, scale and opacity. Table 1 lists how our
interface allows users to edit each property. Other non-editable
object properties include position displacement and angle dis
placement, which are computed automatically after association
inference (see “Associations” later in this section). Among
all the object properties, the position and the orientation are
driven by human poses because they are physically related,
while others are interpolated by user-specified interpolation
algorithms (Table 2).

Property Description
transformation The default transformation center of an
center object is its geometric center. The user can

change it by dragging the center handle
(the red circle in Figure 4(a)).

position The position of an object is defined as the
global position of its transformation center
in a video frame. It is changed by directly
dragging the object to a target position.

orientation The orientation of an object is defined as
and scale the orientation of its principle axis. The

scale is the ratio of the user-specified size
to the original size. To resize and rotate
an object, the user may either intuitively
manipulate the control points on the ob
ject, or precisely change the exact values
in the control panel.

opacity The opacity that moderates an object’s vis
ibility ranges from 0 to 1, where 0 repre
sents invisible.

Figure 5. The user interface in the pose editing mode. (a) failed human

pose detection with missing (left eye and left ear, shown at the top-left

corner) or incorrect (left wrist and left elbow) joint locations; (b) a state

of-the-art automatic refinement method PoseFix [21] failed to correct

the pose and even introduced new errors that need further corrections;

(c) a user may specify the locations of missing joints (the handles for left

eye and left ear are edited in this case) or modify incorrect joint locations

by directly dragging joint handles; (d) the modified human pose using

our UI.

Keyframe Editing Mode
In this mode, users manually edit the properties deciding the
appearances and motions of the virtual objects at keyframes,
with their timings dependent on the subject’s action in the
video. The editing process follows the conventional timeline
based operations (as in most animation software), which are
familiar to experienced animators and can be easily learned by
novices. Please refer to the supplementary video for a sample
creation process. Below we introduce three key elements in
this mode: objects, keyframes, and associations.

Objects. A virtual object is editable once it is dragged from the
media library (Figure 4(b)) onto the canvas (Figure 4(a)). The

Table 1. Editable properties of virtual objects supported by our inter

face.

Property Description
body depen- The user may select “body independent”
dency to disable the association of an object with

body parts between the current keyframe
and the previous keyframe.

single or By default each object is driven by a joint
double and a limb. When an object is to be
driving aligned with two joints that do not belong
joints to a common limb the user may change

this option to enable the association of an
object with two joints.

if-disabled The user may disable the animation of ob
jects between the current keyframe and
the previous keyframe.

interpolation The default interpolation method is linear.
method Other options provided include ease in,

ease out, logarithm, and auto-Bezier.
Table 2. Properties of animation controls supported by our system.

Keyframes. Each object instance has its corresponding track on
the timeline, as shown in Figure 4(d). For temporal alignment,
a user adds keyframes for each object at proper timings in
the subject’s action. A keyframe is added to the timeline

http:model.We

either automatically when one of the object properties at a
particular frame is changed, or manually by pressing a toolbox
button. A shortcut menu on the timeline enables deleting
or changing the timings of keyframes. Table 2 shows the
animation properties to be specified at keyframes, namely,
body dependency, single/multiple driving joints, if-disabled,
and interpolation method.

Associations. The association inference that finds the driving
body parts of an object is conducted automatically when users
edit the keyframes of an object (details in Section “Inference
of Associations”). An alternative approach is to let users di
rectly indicate object-to-body associations, as in [26]. Such
direct graphics-to-body associations might work well when
an object is associated to a fixed body part during animation.
However, when creating animations driven by different body
parts during different periods (e.g., frequent changing from
one hand to the other hand in juggling balls in Figure 1, chang
ing from hands to feet in the soccer example in Figure 10(d)),
automatic inference of associations can reduce the amount of
user intervention. It also has more potential than the manual
specification of object-to-body associations in generalizing to
mobile app creation scenarios, where the technical details (e.g.,
the human poses, keyframe animations) might be hidden from
end users. For example, when authoring the movement of the
basketball in Figure 3(a) in an entertainment mobile app, an
end user may directly specify desired positions of the basket
ball at certain action keyframes without having to understand
the principle that it is associated to and driven by the wrist.
Thus we propose to automatically infer associations as initial
guesses, and let users explicitly specify body associations only
when the inference has errors. After association, the object’s
non-editable keyframe properties (position displacement and
angle displacement) are computed with respect to the local
frame formed by the associated body parts. Specifically, the
position displacement is the difference between the object’s
position and the local frame origin, while the angle displace
ment is the orientation difference between the object and the
local frame (see Figure 2).

Preview Mode
In the preview mode, a user may preview the details of an
object’s joint and limb association. We provide two types of
handles to visualize the association: position handle (a circle
in light green in Figure 6) representing a driving joint, and ori
entation handle (a red dotted line in Figure 6(a)) representing
a driving limb. Users may change the driving joint or limb
by directly dragging the corresponding handles, which are
snapped to the nearest newly specified joint or limb.

METHODOLOGY
In this section, we introduce the core algorithms behind our
UI, including the propagation of joint coordinate changes to
neighboring frames, inference of driving body parts of an
object given the video and user-specified object properties,
and finally the pose-driven tweening method.

Human Pose Processing
We first describe our method for correcting missing and incor
rect joint coordinates. One possible solution for filling missing

Figure 6. The user interface in the preview mode. (a) the arrow is driven

by a joint and a limb, visualized by a position handle in light green and

an orientation handle as a dotted red line segment, respectively; (b) the

barbell is driven by two joints, namely, the left and right wrists, visual

ized by two position handles.

joints is to fit a spline curve to the non-missing joints [30].
However the actual joint trajectories might not follow the
pre-defined type of spline curve. Enlightened by the recent
success of autoregressive (AR) model in long-term 3D human
prediction [38], we model the joint coordinate sequences by
autoregressive models to make full use of the prior knowledge
of the joint sequences. The main idea is to first use raw joint
coordinates to build initial AR models for automatic filling of
missing joints [20], and then fix possible errors by propagating
manual corrections at one frame and the updated AR model
parameters to neighboring frames.

OpenPose returns the (x,y) coordinates of 18 joints. For
simplicity, we denote a joint’s coordinate sequence as
X1, X2, ...,XN for an N-frame video. The forward and
backward AR models of a joint position sequence are

w=1 fwXt−w,represented by Xt = ∑
W t ∈ [W + 1,N] and

Xt = w=1 bwXt+w, t ∈ [1,N −W], respectively, where fw∑
W

and bw are the respective parameters of forward and backward
autoregressive models of order W (W = 5 in our experiment).
Given the raw human poses by OpenPose, we initialize a pair
of forward and backward AR models for each joint, where
the parameters fw and bw are estimated using non-missing
joint coordinates by a least-squares method. The missing joint
coordinates are then automatically filled using these initial
models [20], as shown in Figure 7(a). When the non-missing
joints are scarce to fit the initial models, users can still manu
ally specify the missing joint positions by joint handles.

To reduce the amount of user intervention and to ensure the
coherence of joint position sequences, we propagate user-
specified corrections at a certain frame in a temporal window
of size 2×d + 1 (d = 2 in our experiment). See Figure 7(b)
for an illustrated example. Specifically, we model the prop
agation process as a quadratic programming problem, where
the user-specified input is used as a hard constraint in updating
the neighboring joint locations, while satisfying the autore
gression model constraints to ensure coherence. Suppose the
user modifies the joint position Xm into X̂m at time t = m. The
forward AR model for the modified joint is first updated using

′the sequence Xm−d−W , Xm−d−W+1, ...,Xm−d−1. Let f denotew

the updated parameters. The objective is to minimize the dif- driven by a joint and a limb, we separately infer the joint
ference between the updated joint positions in the neighboring that decides the origin of the object’s local frame, and the
frames of Xm and the joint positions predicted by the updated limb that determines the orientation of the local frame;
forward AR model:

d W • O2: The deciding orientation of an object to be aligned
′ 12
vXm+u−vmin ∑
 1Xm+u − ∑
f , with body parts (limb and/or joint(s)) is often along the

u=−d v=1 principle axis of the object. For example, the principle axis (1)
W of a badminton racket is to be aligned with the forearm (see

′ˆ ˆXm = Xm, Xm =s.t. ∑
f Xm−v.v Figure 2). Thus the orientation of the principal axis of an
v=1

For the first W joints of the sequences, since the forward model
is not defined, the backward AR model will be used as the
constraint in Equation (1).

Figure 7. A demonstration of our missing joint filling and pose correc

tion method on simulated random joint trajectories. (a) Filling missing

values using the autoregressive model estimated from non-missing val

ues. For missing joints in the midst of the sequence, the predictions by

the forward and backward AR models are averaged to fill the missing

joints. Only the backward (forward) model prediction is used for pre

dicting missing joints at the beginning (end) where the forward (back

ward) model is not defined; (b) when the user manually specifies a joint

position at one frame (as shown by the red dots) to fix incorrect joint po

sitions (the green dots), the neighboring frames are updated accordingly

by a quadratic programming.

Inference of Associations
In this subsection, we present a method to infer the association
of an object to body parts given their positions and orienta
tions in two consecutive keyframes. The output is indexes
of an optimal joint and limb, or of a joint pair that drive the
movement of the object.

By analyzing videos of common human actions that drive
movements of objects (e.g., daily living activities, sports, etc.),
we make the following observations for designing the infer
ence method:

• O1: The translation and rotation of an object might be
driven independently. For example, in the juggling example
in Figure 1, the balls constantly change their positions but
their orientations hardly change. Therefore, if an object is

object is used for limb inference;

• O3: Objects are typically aligned with a joint and a limb.
But some objects are to be aligned with two joints that do
not belong to a common limb. For example, the orientation
of a golf pole is largely determined by a wrist and a neck
joint (see Figure 1). In such cases, since an object rotates
with respect to the orientation angle of the vector formed by
the two joints, we infer the two joints from such orientation
angles.

Denote the 18 2D joint coordinates for each frame com
puted by OpenPose as jt

i , t = 1,2, ...,N, i = 1,2, ...18. At
each frame, the 18 joints form 19 semantic limbs with pre
defined positive directions, denoted as lt

m , t = 1,2, ...,N, m =
1,2, ...19, and their correspond orientations αm, which are the t

angular displacements of limb positive directions from the pos
itive x-axis direction in the pixel coordinates of video frames.
Suppose two consecutive keyframes are at time k1 and k2 with
k1 ≤ k2. Further denote the positions of the object at the two
keyframes as sk1 and sk2 , and the orientations of the object
αk1 and αk2 , respectively. Please see the notations in Figure 2
for an illustration. Since the numbers of joints and limbs are
small and fixed, the optimal joint or limb can be inferred by
matching the user-specified object positions and orientations
with those of the body parts.

We first describe association inference for the case of an object
being driven by a joint and a limb. The joint deciding the
origin of the object’s local frame is inferred from both the
spatial distances between the object and all the joints at k1
and k2, and the motions represented by their position changes
between k1 and k2. Specifically, the driving joint is inferred
by:

i ∗ = argmin 1 jk
i

1
− sk112 + 1 jk

i
2
− sk212

i (2)
+ 1(jk

i
2
− jk

i
1
) − (sk2 − sk1)12.

Similarly, we infer the limb deciding the orientation of the
object’s local frame from the similarity in both the orientation
of the object and all the limbs at k1 and k2, and their orientation
changes between k1 and k2:

∗ m = argmin αm −αk1
 + α

m −αk2

k1 k2
m (3)

 + (αm −α
m) − (αk2 −αk1) .k2 k1

After inference of association, we compute the object’s posi
tion displacement and angle displacement in the local frames

http:1,2,...18

at the two keyframes. The displacements are given by

δ skp
= skp

− ji ∗ ,kp
(4)

δαkp
= αkp

−α
m ∗ , p = 1,2.kp

The joint pair (i ∗ 1, i
∗
2) for virtual objects driven by two joints

are inferred similarly by matching the object orientation with
the orientation angles of vectors of all joint pairs. Then we set
the origin of the object’s local frame as the midpoint of the
two joints.

The above inference method might fail when the object has
a large displacement with the target driving joint, or when
multiple pairs of joints have similar orientations (see the dis
cussions on failure cases in Section “Evaluations”). The user
may then interactively use the position handle and orientation
handle to overwrite the inference results.

Interpolation
The position and orientation of an object in an intermediate
frame are computed as a combination of the intermediate po
sition and orientation of the local frame, and the interpolated
position and angle displacements in the local frame. Specifi
cally, at time t = τ between keyframes k1 and k2, the position
and orientation of the object driven by a joint and a limb are
given by

ji ∗ sτ = + F(δ sk1 ,δ sk2),τ (5)
ατ = ατ

m ∗ + F(δαk1 ,δαk2).

Similarly, the position and orientation of the object driven by
two joints are computed as follows:

i ∗ i ∗

sτ = (jτ
1 + jτ

2)/2+ F(δ sk1 ,δ sk2), (6)
i ∗ 1,i

∗

ατ = ατ
2 + F(δαk1 ,δαk2),

where F(•) is one of the user-specified preset interpolation
algorithms in Table 2.

EVALUATIONS
In this section, we show the results of a user study evaluating
the effectiveness of PoseTween, and the results of quantita
tive experiments evaluating the accuracies of the human pose
processing and the association inference methods.

User Evaluations
We conducted a user study to evaluate the improvement of
our system in using human poses over the traditional tween
animation without using human poses, with respect to sim
plifying the authoring process and improving the quality of
adding visual effects to human action videos for novice users.

Apparatus. Our user interface was developed with Python 3.6
on a laptop (Intel i5 @2.7GHz, 8GB RAM) running macOS.
The lightweight OpenPose ran at 9∼15 fps on this PC. We
captured action videos by a mobile phone camera with 1080p
resolution at 30 fps.

Participants. 12 university students (a1∼a12, aged 24∼30, 3
female) were invited to participate in the user study. Among

Figure 8. A comparison of PoseTween, baseline method (using tradi

tional tween animation), and tracking-only method (i.e., simply letting

the basketball track the wrist) on selected intermediate frames.

them, 9 had no animation background while 3 had intermediate
experience in making animations (on a 1-10 point rating, a6
rated 7 with Blender and 3ds MAX, a8 rated 6 with Toon
Boom, a10 rated 4 with Adobe Flash). Each participant was
asked to perform exploitation and exploration tasks, and to
complete a questionnaire at the end of the study.

Exploitation Task
The goal of the exploitation task was to evaluate the ease
of use and the satisfactory of outcome of our system by a
set of fixed tasks. For comparison, we prepared a baseline
system by removing the pose-driven functions from our user
interface such that the baseline system supports making tween
animation of objects only by interpolation algorithms, similar
to tweening tools in existing animation software. We proposed
the following hypotheses:

• H1. Using PoseTween to make tween animations of objects
with respect to human actions simplifies the authoring pro
cess. Specifically, PoseTween requires less creation time
(H1a) and fewer keyframes (H1b) than the baseline system;

• H2. PoseTween yields animations of objects that appear
more naturally interacting with human actions than the base
line system.

During training, we first gave a detailed tutorial on the op
erations of our system as well as the baseline system. The
participants then tried freely to get familiar with the two sys
tems. After that, each participant was asked to reproduce three
target augmented videos given human action videos and ob
ject design assets to animate using both our system and the
baseline system (i.e., 2 methods × 3 animations). The order of
the methods was counterbalanced, and the order of the tasks
was randomized to reduce the learning effects.

http:software.We

The three videos chosen were: (1) “badminton”, animating
a racket driven by a wrist and a forearm (a joint and a limb),
which is a medium complex motion involving translation and
rotation; (2)“weight lifting”, animating a barbell driven by
two wrists (two joints) to test animating using the multi-joint
functionality; (3)“arrow”, animating an arrow and a bow (two
objects) driven by two wrists to test animating multiple ob
jects.

The creation time and the number of keyframes needed for
making each animation are shown in Figure 9. Paired t-tests be
tween PoseTween and the baseline system on the creation time
and the number of keyframes for each animation show that, ex
cept for the creation time for “weight lifting” (p= 0.5501, H1a
rejected), PoseTween required significantly less creation time
and fewer keyframes than the baseline system (p < 0.05, H1a
and H1b supported). The movement of the barbell in “weight
lifting” was relatively simple though it involved two joints.
Since there was no complex object transformation, in the base
line system the participants only needed to add keyframes to
adapt the barbell’s speed to that of the two wrists. The most
significant differences in the creation time and the number of
keyframes occurred in the “badminton” action (p = 0.0105
and p = 1.87 × 10−5, respectively), in which the complex
motion path and speed variation of the racket required the
participants to add more keyframes in the baseline system to
achieve such a movement. In contrast, with PoseTween, the
body movements of the subject provided more motion guid
ance to the racket. This result indicates that our system has
clear advantages especially when the motion of an object is
complex. This is confirmed by a8, who had used Toon Boom,
commenting on our system: “It can easily handle some com
plex movements (e.g., rotating and translating simultaneously),
which are difficult with common interpolation algorithms.”

For the creation time we also record the respective times
needed for keyframe editing, previewing videos and anima
tion results, and modifying object animations and association
errors. There is no significant difference in previewing and
modifying times between PoseTween and the the baseline sys
tem, while PoseTween requires significantly less keyframe
editing time in all of the three actions (p = 0.0005 for “bad
minton”, p = 0.026 for “weight-lifting” and p = 0.0003 for
“arrow”). The keyframe editing time in PoseTween accounts
for 35.2% of the total creation time on average, compared with
60.5% in the baseline system. Even though the users needed to
spend a certain amount of time previewing the videos and mod
ifying results during creation, PoseTween effectively reduced
the keyframe editing time.

To verify the improvement in the appearance of visual effects
using PoseTween compared with the baseline system, we let
the participants rate the level of satisfaction towards the videos
augmented with visual effects made by PoseTween and the
baseline system separately (1 is the least satisfied and 10 is
the most satisfied). The satisfaction level of augmented videos
made by PoseTween (Mean=9.3, SD=0.78) was significantly
higher than those made with the baseline system (Mean=6.0,
SD=1.94) (p<0.001), supporting H2.

(a) (b)

0

5

10

15

20

25

30

35

40

45

badminton weight-lifting arrow

Number of Keyframes

baseline PoseTween

0

100

200

300

400

500

600

700

800

900

badminton weight-lifting arrow

Creation Time (unit: s)

baseline PoseTween

Figure 9. Comparisons of average creation time and average number

of keyframes required for the three actions using PoseTween and the

baseline method. The stacked bars in (a) show from bottom to top the

average times for keyframe editing, previewing and modifying, respec

tively.

The participants were asked to rate PoseTween and the baseline
system in terms of the ease of use in the questionnaire, includ
ing a standard System Usability Scale (SUS) [5] for each of the
two systems. The SUS score of PoseTween was 80.2 compared
with 69.5 of the baseline system. Besides the SUS, the partici
pants were also explicitly asked in the questionnaire whether
they found PoseTween has simplified the editing process and
achieved more natural-looking video results by a 10-point rat
ing (1 is strongly disagree and 10 is strongly agree), resulting
in the average scores of 8.5 (SD=0.81) and 8.7 (SD=1.1), re
spectively. Participant a6, who had experience using Blender
and 3ds MAX, verbally commented that he preferred to use
PoseTween to edit object animations related to human actions,
and that he was able to easily adapt his previous skills to using
PoseTween.

Exploration Task
The goal of this task was to test the expressiveness of our
system. In this task, each participant was asked to think of a
favourite scenario that involves one or more objects driven by
a human action and to produce it using PoseTween. The partic
ipants then performed the actions, which were video-recorded,
and prepared the design assets of objects to be animated. Even
though our system does not support live preview, the partic
ipants’ performances were not influenced by the absence of
actual objects, since they were aware that they could adapt
the objects to their actions in the editing process. Figure 10
shows several representative animations created by the partici
pants. Most participants came up with a sport action, such as
playing soccer and golf, or an action of a subject manipulating
a tool, such as a fork and an axe. In the creation process, 8
participants made use of both the body-independent function
and the body-driven function, making the objects alternatively
being driven by a body part and move independently. In the
action “playing shuttlecock” (Figure 10(e)), the shuttlecock
moves independently of body parts in most of the frames, in
which the participant edited the movement of the shuttlecock
with respect to the timings in the subject’s movement. In this
case, the object is hardly driven by the subject’s movement,
and thus the creation process with PoseTween would approach
that with the baseline system. Even though PoseTween mainly

Figure 10. Video augmentation results from the exploration task. (a) “knight”: 25 keyframes, 9min 31s; (b) “bowling”: 13 keyframes, 10min 51s; (c)

“cutting tree”: 14 keyframes, 14min 29s; (d) “soccer”: 13 keyframes, 2min 07s; (e) “playing shuttlecock”: 23 keyframes, 5min 49s.

targets at animating objects interacting with human actions,
five of the creation scenarios involve interactions between vir
tual objects (e.g. bowling ball-versus-pins and axe-versus-tree
in Figure 10(b)(c)).

User Feedback
In the study, all the participants were able to learn to use
our system quickly. During training, all of them took less
than 8 minutes to get familiar with the operations in both sys
tems. The participants commented favorably about our system.
Even the participants with little animation experience found

PoseTween to be a useful tool for adding visually appealing
effects without having to learn a lot of background knowledge
on making animations.

a3: “The tool is easy and intuitive to use. I do not need to
fine-tune keyframes frequently.”

a5: “... It reduces manual operations, and makes the results
more realistic especially for more complex motions and longer
videos.”

a2: “A very nice tool, easy to operate the objects to make them
interact with the human body, to make funny and meaningful
videos. I would prefer to use it in an instant message chat in
the future.”

a11: “The body-driven function provides very natural effects
when an object has a close interaction with the human, espe
cially when the motion is complex or the interaction between
the human and object is not just mounted to a static point.”

a1: “... I’m looking forward to using the system in the future.”

A participant also proposed suggestions and possible improve
ments:

a3: “In daily life scenarios, objects are often driven by hands,
thus providing templates of pre-set hand associations and
build-in visual effects for common object categories may be
more convenient for most common users.”

Human Pose Processing
To quantitatively evaluate the effectiveness of our pose editing
tool in its accuracy and ability to reduce the amount of user
intervention, we collected the statistics of correcting errors in
human poses estimated by lightweight OpenPose. Ideally this
evaluation would have been conducted by the invited partic
ipants. But since some joints remotely related to the virtual
objects (e.g., ears, nose) might not require corrections for the
animation creation processes, and both the joint correction
process and the measurements in the experiment are objective,
we, the designer of the experiment, modified the human poses
instead of user study participants for a thorough evaluation of
our tool. The videos selected for the experiment included both
simple (“arrow”, “weight lifting” and “golf”) and complex
(“badminton” and “boxing”) actions, covering a large variety
of joint trajectories. For each video we counted the number of
errors by OpenPose while manually correcting each error as
ground-truth joint positions for the later experiments.

In the first experiment we evaluate the ability of our tool in
reducing the amount of user intervention. We corrected the
human poses in the same selected videos using our tool, and
recorded the numbers of corrections by joint handles, and the
time needed, as shown in Table 3. Since the manual correc
tion process also included fine-tuning the automatically filled
results, there might be more manual corrections than incorrect
joints by OpenPose, as in the action “boxing”. In “boxing”,
since the wrist joints have large speed and position variations,
the initialized AR models for the wrists failed in predicting
the precise occluded wrist positions. For all of the five videos,
the numbers of manual corrections using our tool were far less
than the total numbers of missing and incorrect joints, and the
correction times were far less than manual corrections. These
indicate that our tool is able to semi-automatically correct the
joint coordinates produced by pose estimation methods with a
small amount of user intervention.

In the second experiment we evaluate the accuracy of our hu
man pose correction method. We compared the joint position
errors with respect to the ground-truth positions among the
raw pose positions by lightweight OpenPose, the Catmull-
Rom interpolation method [30], a state-of-the-art automatic

pose refinement method PoseFix [21], and our semi-automatic
method without and with manual collection, as shown in Ta
ble 4. In implementing the Catmull-Rom interpolation method
for comparison, we filled the missing joints by interpolating
all the non-missing joints. This interpolation method gener
ally performed well but failed to recover the complex wrist
trajectories in “boxing”. Since PoseFix does not involve an
error detection process, its refinement results sometimes mis
takenly overwrote correct joint positions, and contained errors
that needed further corrections (see Figure 5(b)). In contrast,
our tool achieved a reasonable accuracy by correcting only a
portion of incorrect joints.

Association Inference
To evaluate the effectiveness of our association inference
method, in the exploitation task we recorded the numbers of
false joint and limb associations, as shown in Table 5. These
false associations appeared in a few common situations. In the
“weight-lifting” action, the keyframe with the subject having
a pose in Figure 6(b) caused the association errors, where
the barbell was associated with two shoulders instead of two
wrists. This is largely because the shoulders have similar ori
entation angles to those of the two wrists. However, since
these two pairs of joints had similar orientation angles, the
false associations did not noticeably influence the animation
results even when the participants did not correct them. The
“arrow” action had the least association errors, mostly because
this action did not involve large rotations, and between every
two keyframes of the arrow only the driving body parts had
obvious movements while others remained stationary. In the
failure cases, a participant let the subject hold the front end
of the arrow, where the transformation center of the arrow
was closer to the left elbow than the left wrist, resulting in
the arrow driven by the left elbow and rotated with the left
shoulder. Since the position displacement between the arrow
and the left elbow was nearly constant in the translation of the
arrow, false associations also did not cause noticeable artifacts
in this action. For the “badminton” action, the inference of
association failed when the user-specified orientation of the
racket differed much from the orientation of the right forearm.
Since the orientation of the racket was largely determined by
the orientation of the forearm, false associations would cause
obvious artifacts in the animation results. In the user study, all
the participants were able to identify the false joint or limb
associations and correct the associations accordingly.

LIMITATIONS
As discussed previously, our current implementation supports
2D visual effects only. To achieve 3D rotation effects with
our current implementation, users can only use 2D scaling
of objects to simulate the effects (Figure 11). This limitation
might be addressed by introducing view perspectives in the
animation of 3D assets. By jointly estimating the camera pose
and human pose from videos [17], the rendered positions and
orientations of the objects are determined by both the human
pose and camera pose.

Our current system does not handle occlusions between human
bodies and objects. Users have to manually handle occlusions
by setting the objects to be invisible when they should be

http:method.We

Ground Truth Pose Correction

video name # frames # missing # incorrect time (s) # correction time (s)

arrow
badminton
boxing
weight lifting
golf

201
119

83
386

71

172
107
103

24
69

45
21

8
27
11

1196.27
941.21
821.16

1528.09
677.61

15
11
13
10

6

125.22
154.74
139.25
296.90

85.89

Table 3. Statistics of correcting human poses using our tool. Ground truth includes the total number of frames in each video, number of missing and

incorrect joint positions in the raw OpenPose results, and time for manually correcting each error. During correction we record the number of manual

corrections and correction times.

Raw Catmull PoseFix Ours(w/o) Ours
arrow 27.25 9.45 44.75 2.87 2.14

badminton 12.93 6.90 30.87 3.10 1.26

boxing 53.71 34.87 59.65 12.89 4.57

lifting 15.43 7.02 18.37 0.54 0.42

golf 25.62 8.73 23.18 1.73 0.69

Table 4. A comparison of average joint location errors per frame (Eu

clidean distance with ground-truth joint locations) between raw human

poses [22], the Catmull-Rom spline interpolation, the automatic pose re

finement method PoseFix [21], and our semi-automatic pose correction

method (Ours(w/o): without manual correction, errors of our missing

joint filling method; Ours: errors after manual correction). (unit: pixel.)

badminton arrow weight-lifting

joint limb joint limb joint pair

inference 79 79 74 74 116

failure 6 10 3 4 20

Table 5. The total numbers of association inferences in the exploitation

task for each action, and the numbers of failures by automatic inference.

Figure 11. Limitation: (a)(c) tweening results involving only object

rotation in the image plane; (b)(d) results using 2D scaling to simulate

object rotations perpendicular to the image plane.

occluded. This might be addressed by segmenting the subjects
in video frames [12] to support layered animations.

CONCLUSION AND FUTURE WORK
In this paper we presented the first system that allows novice
users to easily add visual effects to human action videos by
creating pose-driven tween animations of virtual objects. We
designed a user interface that allows users to edit keyframe
properties to animate the objects with respect to human actions,
and designed an association inference method to associate the

objects to driving body parts automatically. Our pose-driven
method utilizes the flexibility of human body to both reduce
users’ efforts in the visual effect authoring process and achieve
visually appealing results. We also provided a tool for users
to semi-automatically modify human poses computed by pose
estimation algorithms.

We have developed only a prototype of PoseTween. In the
future we would like to explore more functions to make
PoseTween more powerful. As discussed in Section “Lim
itations”, by incorporating 3D human poses and 3D objects,
PoseTween can be generalized to editing keyframes in 3D
context with depth and perspectives to generate more real
istic tween animations. In addition, currently users need to
manually find the keyframes of human actions for timings for
editing the objects’ keyframe properties. There are existing
works that detect keyframes in human action videos automat
ically [39]. Our system has the potential to further simplify
the editing process by suggesting timings according to the
keyframes of human actions. In PoseTween, the keyframes of
objects are associated with the keyframes of human actions,
it would thus also be interesting to make human action-based
visual effect templates, which would be useful for building
libraries for entertainment applications. After a user makes a
tween animation, the authored keyframe properties are saved
as an animation preset. When another user performs a simi
lar action, the preset animation can be adaptively applied to
generate an augmented new video automatically.

Acknowledgement
We thank the anonymous reviewers for the constructive com
ments and the user study participants for their great help. This
research was supported by grants from the Research Grants
Council of HKSAR (Project No. HKUST16210718), and the
Centre for Applied Computing and Interactive Media (ACIM)
of School of Creative Media, City University of Hong Kong.

REFERENCES
[1] Rıza Alp Güler, Natalia Neverova, and Iasonas

Kokkinos. 2018. Densepose: Dense human pose

estimation in the wild. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition. 7297–7306.

[2] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele.
2009. Pictorial structures revisited: People detection and
articulated pose estimation. In IEEE conference on

http:results.We
http:objects.We

computer vision and pattern recognition. IEEE,
1014–1021.

[3] Rahul Arora, Rubaiat Habib Kazi, Danny Kaufman,

Wilmot Li, and Karan Singh. 2019. MagicalHands:

Mid-Air Hand Gestures for Animating in VR. In

Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’19).
ACM, New York, NY, USA, 12.

[4] Christoph Bregler, Lorie Loeb, Erika Chuang, and
Hrishi Deshpande. 2002. Turning to the masters: motion
capturing cartoons. In ACM Transactions on Graphics
(TOG), Vol. 21. ACM, 399–407.

[5] John Brooke and others. 1996. SUS-A quick and dirty
usability scale. Usability evaluation in industry 189, 194
(1996), 4–7.

[6] N. Burtnyk and M. Wein. 1975. Computer Animation of
Free Form Images. SIGGRAPH Comput. Graph. 9, 1
(April 1975), 78–80.

[7] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
2017. Realtime multi-person 2d pose estimation using
part affinity fields. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. 7291–7299.

[8] Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon.
2012. KinÊtre: animating the world with the human
body. In Proceedings of the 25th annual ACM
symposium on User interface software and technology.
ACM, 435–444.

[9] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu.
2017. Rmpe: Regional multi-person pose estimation. In
Proceedings of the IEEE International Conference on
Computer Vision. 2334–2343.

[10] Mihai Fieraru, Anna Khoreva, Leonid Pishchulin, and
Bernt Schiele. 2018. Learning to refine human pose
estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops.
205–214.

[11] Hongbo Fu, Chiew-Lan Tai, and Oscar Kin-Chung Au.
2005. Morphing with laplacian coordinates and
spatial-temporal texture. In Proceedings of Pacific
Graphics. 100–102.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision.
2961–2969.

[13] Robert Held, Ankit Gupta, Brian Curless, and Maneesh
Agrawala. 2012. 3D puppetry: a kinect-based interface
for 3D animation.. In UIST. Citeseer, 423–434.

[14] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,
Mykhaylo Andriluka, and Bernt Schiele. 2016.
Deepercut: A deeper, stronger, and faster multi-person
pose estimation model. In European Conference on
Computer Vision. Springer, 34–50.

[15] Eakta Jain, Yaser Sheikh, Moshe Mahler, and Jessica
Hodgins. 2012. Three-dimensional proxies for
hand-drawn characters. ACM Transactions on Graphics
(ToG) 31, 1 (2012), 1–16.

[16] Ming Jin, Dan Gopstein, Yotam Gingold, and Andrew
Nealen. 2015. AniMesh: interleaved animation,
modeling, and editing. ACM Transactions on Graphics
(TOG) 34, 6 (2015), 207.

[17] Angjoo Kanazawa, Michael J Black, David W Jacobs,
and Jitendra Malik. 2018. End-to-end recovery of human
shape and pose. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.
7122–7131.

[18] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: sketching
dynamic and interactive illustrations. In Proceedings of
the 27th annual ACM symposium on User interface
software and technology. ACM, 395–405.

[19] UI KINECT. 2013. Human Interface Guidelines.
Microsoft Corporation (2013).

[20] Abdel-Mohsen Onsy Mohamed. 2006. Principles and
applications of time domain electrometry in
geoenvironmental engineering. Vol. 5. CRC Press.

[21]	 Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee.
2019. Posefix: Model-agnostic general human pose
refinement network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. 7773–7781.

[22] Daniil Osokin. 2018. Real-time 2D Multi-Person Pose
Estimation on CPU: Lightweight OpenPose. arXiv
preprint arXiv:1811.12004 (2018).

[23] George Papandreou, Tyler Zhu, Nori Kanazawa,
Alexander Toshev, Jonathan Tompson, Chris Bregler,
and Kevin Murphy. 2017. Towards accurate
multi-person pose estimation in the wild. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition. 4903–4911.

[24] Min Je Park, Min Gyu Choi, Yoshihisa Shinagawa, and
Sung Yong Shin. 2006. Video-guided motion synthesis
using example motions. ACM Transactions on Graphics
(TOG) 25, 4 (2006), 1327–1359.

[25]	 Daniel Roetenberg, Henk Luinge, and Per Slycke. 2009.
Xsens MVN: full 6DOF human motion tracking using
miniature inertial sensors. Xsens Motion Technologies
BV, Tech. Rep 1 (2009).

[26] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and
Wilmot Li. 2019. Interactive Body-Driven Graphics for
Augmented Video Performance. In Proceedings of the
2019 CHI Conference on Human Factors in Computing
Systems. ACM, 622.

[27]	 Thomas W Sederberg, Peisheng Gao, Guojin Wang, and
Hong Mu. 1993. 2-D shape blending: an intrinsic
solution to the vertex path problem. In siggraph, Vol. 93.
15–18.

http:Performance.In
http:2017.Maskr-cnn.In

[28] Yeongho Seol, Carol O’Sullivan, and Jehee Lee. 2013.
Creature features: online motion puppetry for
non-human characters. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation. ACM, 213–221.

[29] Wei Shen, Ke Deng, Xiang Bai, Tommer Leyvand,
Baining Guo, and Zhuowen Tu. 2012. Exemplar-based
human action pose correction and tagging. In 2012 IEEE
Conference on Computer Vision and Pattern
Recognition. IEEE, 1784–1791.

[30] Jakub Smołka and Maria Skublewska-Paszkowska.
2014. Comparison of interpolation methods based on
real human motion data. Przegląd Elektrotechniczny 90,
10 (2014), 226–229.

[31] Qingkun Su, Xue Bai, Hongbo Fu, Chiew-Lan Tai, and
Jue Wang. 2018. Live sketch: Video-driven dynamic
deformation of static drawings. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems. ACM, 662.

[32] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen
DiVerdi, Wilmot Li, and Daniel Leithinger. 2020.
RealitySketch: Embedding Responsive Graphics and
Visualizations in AR through Dynamic Sketching. In
Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology.

[33] Sirnam Swetha, Vineeth N Balasubramanian, and CV
Jawahar. 2017. Sequence-to-Sequence Learning for

Human Pose Correction in Videos. In 2017 4th IAPR
Asian Conference on Pattern Recognition (ACPR). IEEE,
298–303.

[34] Carl Vondrick, Donald Patterson, and Deva Ramanan.
2013. Efficiently scaling up crowdsourced video
annotation. International Journal of Computer Vision
101, 1 (2013), 184–204.

[35] Brian Whited, Gioacchino Noris, Maryann Simmons,
Robert W Sumner, Markus Gross, and Jarek Rossignac.
2010. BetweenIT: An interactive tool for tight
inbetweening. In Computer Graphics Forum, Vol. 29.
Wiley Online Library, 605–614.

[36]	 Nora S Willett, Hijung Valentina Shin, Zeyu Jin, Wilmot
Li, and Adam Finkelstein. 2020. Pose2Pose: pose
selection and transfer for 2D character animation. In
Proceedings of the 25th International Conference on
Intelligent User Interfaces. 88–99.

[37] Wenwu Yang. 2017. Context-aware computer aided
inbetweening. IEEE transactions on visualization and
computer graphics 24, 2 (2017), 1049–1062.

[38] Jason Y Zhang, Panna Felsen, Angjoo Kanazawa, and
Jitendra Malik. 2019. Predicting 3d human dynamics
from video. In Proceedings of the IEEE International
Conference on Computer Vision. 7114–7123.

[39] Zhipeng Zhao and Ahmed M Elgammal. 2008.
Information Theoretic Key Frame Selection for Action
Recognition.. In BMVC. 1–10.

http:CorrectioninVideos.In

	Introduction
	Related Work
	User Interface
	Pose Editing Mode
	Keyframe Editing Mode
	Preview Mode

	Methodology
	Human Pose Processing
	Inference of Associations
	Interpolation

	Evaluations
	User Evaluations
	Exploitation Task
	Exploration Task
	User Feedback

	Human Pose Processing
	Association Inference

	Limitations
	Conclusion and Future Work
	References

