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Abstract—In this paper, the statistical properties of pixel 
displacements in turbulence degraded images are analyzed. Two 
main problems are addressed before that. One is the computation 
of pixel displacements. Dense optical flow is used since blur 
makes features like points and edges hard to track. The other one 
is selection of statistical samples. We use 2D-Hilbert transform to 
extract feature points, and only displacements at those points are 
considered. Statistical analysis includes distribution fitting, 
statistical parameters and normality test at different sample 
times and turbulence strengths. In the experiments, the method 
of computing distortions is first applied to simulated dataset to 
test its validity. Then this method of computing displacements 
and statistical analysis is applied to real-scene image sequences. 

Keywords—atmospheric turbulence; image dancing; optical 
flow; Hilbert transform; statistical analysis  

I.  INTRODUCTION 
Optical turbulence is formed by the imhomogeneous 

distribution of temperature in atmospheric turbulence. It leads 
to a random fluctuation of refractive index and ultimately 
causes blur and distortions in turbulence degraded images. The 
core mechanism of this distortion is called wave-front angle-of-
arrival(AOA) fluctuation, namely the random fluctuation of 
phase along the path from scene object to receiver aperture. 
The elimination of atmospheric turbulence-degraded effects is 
one of the main subjects in the study of optical imaging and 
image processing[1-5]. Meanwhile, these effects result from 
the interference of medium and light waves, thus can reflect 
some characteristics of the medium. AOA fluctuation is related 
to key parameters of optical turbulence, such as turbulence 
strength, turbulence inner and outer scale, and distance of 
optical path. Current studies utilize distortions in atmospheric 
turbulence-degraded images to retrieve AOA characteristics, 
and to estimate physical quantities such as turbulence inner 
scale[6], turbulence strength[7-9], crosswind strength and 
orientation[10], imaging distance[11], etc. Both the elimination 
of turbulence effects and the retrieval of turbulence parameters 
requires computing statistics such as variance, but there is no 
further study on statistical regularities. The statistical analysis 
of pixel displacements would benefit the study of statistical 
regularties of optical turbulence, and can work as a priori 
information in the elimination of turbulence effects. 

In the work of image degrations simulation[12,13] and 
turbulence effects elimination[1-5], people typically make 
assumptions that pixel displacements in turbulence-degraded 
images are subjected to Gaussian random fields. In this paper, 
the statistical characteristics of pixel displacements are 
analyzed using image computing technology. The degration 
effects are a combination of image blur and distortion, and 
discontinuities at object boundaries are degrade into gray level 
transition intervals, thus common methods of computing 
motions by tracking feature points would fail to match the 
exact point of interest. Horn-Schunck(HS) optical flow solves a 
dense motion field in the image by minimizing global 
energy[14]. The optical flow vector at each pixel can be 
viewed as the pixel displacement. However, motions in less-
textured regions are more likely to be affected by noise, so 
pixel displacements in rich-textured regions are preferred to be 
used for statistical analysis. Hilbert transform can convert 
discontinuities into local maximums, which has been widely 
used in edge detection[15]. In this paper, 2D-Hilbert transform 
and HS optical flow are combined to obtain relatively reliable 
pixel displacements. In this way, dense pixel displacements are 
firstly solved by optical flow, then those with less noise are 
screened using 2D-Hilbert transform. 

In statistical analysis part, non-parametric kernel density 
estimation is utilized for fitting the possibility density function 
of pixel displacements[16]. It can estimate density function 
directly from data, without having to make an assumption of a 
particular distribution model. The displacements are assumed 
to be Gaussian in simulation, so we test the normality of the 
data[17] with respect to the Gaussian random field. Statistical 
parameters like variance, skewness and kurtosis are also 
computed at different sample times and turbulence strengths to 
study its statistical regularities. Finally, the same methods for 
computing pixel displacements and statistical analysis are 
performed on real-scene image sequences recorded in 
atmospheric turbulence conditions. 

II. METHODS 

A. Method description 
The steps for image distortion statistical analysis are as 

follows. First, dense motion field in the image sequence is 
computed using HS optical flow[14]. Then, feature points are 



extracted using 2D-Hilbert transform combined with a peak 
detector[15], and a mask indicating feature points is 
constructed. After that the motion field is selected in terms of 
the mask, and the optical flow vectors selected by the mask are 
considered as displacements of feature points. Finally, 
horizontal and vertical displacements of feature points are 
analyzed respectively, which includes computing variance, 
skewness and kurtosis, fitting possibility density curves, and 
normality tests. Figure 1 shows the flow chart for this process. 
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Fig. 1. Flow chart of the entire process 

B. Pixel Displacements of Feature Points 
In the first step, pixel displacements are obtained. Input 

image sequence is denoted as { } , 1, 2,...,kI k n= . Let the flow 

vector at point ( )= ,x yx  be ( ),x yv v=v , which contains two 
components with respect to the horizontal and vertical direction. 
The object function of Horn-Schunck optical flow is based on 
intensity consistency model and the assumption that optical 
flow field varies smoothly: 
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where xI , yI and tI represent first derivative of intensity with 
respect to horizontal, vertical and time respectively. 1α  and 2α  
are weights for data term and smooth term. 

 2D-Hilber transform is then applied to the image sequence. 
The detailed formula of Hilbert transform is given in [18], and 
its application in image processing is briefly listed here. Let the 
original image be a 1 2N N×  matrix [ ]1 2,I n n , Hilbert transform 
is a signum funtion filtering process in frequency domain: 
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The absolute values of the result of Hilbert transform are taken 
and binarized with a threshold. The regions above the threshold 

are rich of textures. A peak detector is applied to the textured 
regions to extract feature points. In this paper, we use 
centroiding algorithm as a peak detector[15]. A feature point 
( ),x y  is computed as: 
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 As mentioned above, we regard the motion information 
provided by relatively textured regions as having higher 
confidence, thus only displacements at feature points are used 
for statistical analysis. Suppose the number of feature points is 
p . The coordinates of feature points are index for extracting 

corresponding horizontal and vertical displacements in the 
optical flow field. Selected vectors are denoted as Iv . The 
displacements vary with time, and form a bunch of 
displacements within the image sequence. Suppose a bunch of 
displacements varying with time at one feature point is 
regarded as a group of sample, then we obtained p  groups of 
sample from one image sequence. 

C. Methods for Statistical Analysis 
The statistical methods involved in this paper include 

distribution fitting, computation of variance and higher-order 
moments, and normality test. For simulated datasets, the main 
purpose is to test that the statistical characteristics given by the 
method of this paper is consistent with ground truth, namely 
the results are consistent with the settings of Gaussian random 
fields in simulation. For real scene datasets, which are without 
grount truth, distribution fitting, normality test and computation 
of moments are applied. 

Nonparametric kernel density estimation[16] is used to fit a 
distribution curve. The advantage of this approach is that it 
estimates density function using only sample data, without 
having to make an assumption of its distribution model and fit 
it with parameters.  

Upon observing the distribution form from the graphs, 
normalities of the displacements is tested using Kolmogorov-
Smirnov(KS) test[17], which measures the disparity between 
the sample cumulative distribution function and the theoretical 
cumulative distribution function. The null hypothesis is that the 
sample displacements comes from a distribution in the normal 
family, against the alternative that they do not come from such 
a distribution. Denote theoretical normal cumulative 
distribution function as ( )0F x , cumulative distribution function 
of displacements by ( )nF x , and disparity ( ) ( )0max nD F x F x= − . 
Null hypothesis is rejected when ( ),D D n α> , in which ( ),D n α  
is the critical value for rejection at a significance level of α  
and sample size n . ( ),D n α  can be obtained by refering to the 
table in [17]. In this paper, a significance level 0.05α = is 
adopted. 

The most commonly used statistical parameter in the 
literatures is variance, because it has a direct relationship with 
turbulence strength[19]. Besides variance, higher moments 



parameters include skewness and kurtosis[20]. Equation(6) 
denotes skewness, which is defined as the ratio of third 
moment and cube of standard deviation to measure horizontal 
symmetry. If a distribution’s scores are concentrated on the 
right side of the curve, it is left skewed and has a negative 
skewness. A normal distribution has a skewness value of zero. 
Kurtosis is defined as the ratio of fourth moment and square of 
variance as in (7), which identifies how concentrated the values 
are in the center of distribution. A normal distribution has a 
kurtosis value of three[20]. 
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III. EXPERIMENTS 

A. Simulated Data 
In simulation experiments, turbulence degraded images are 

generated using an empirical model[12,13]. The approach of 
distortion simulation is by filtering a Gaussian random filed 
with a spatial correlation function. Upon Fourier inverse 
transform and normalization, simulated displacements are 
subjected to a Gaussian random field with mean value of zero 
and variance proportional to AOA variance. The original image 
is 256*256 sized gray level checkerboard. 5000 frames of 
simulated data are obtained under each set of parameters. 
Atmospheric turbulence parameters and imaging parameters 
used in simulation are listed in Table.1 and 2 respectively. 

TABLE I.  ATMOSPHERIC TURBULENCE PARAMETERS 

Parameters Value Unit 

Outer scale 0L   15 m 

Inner scale 0l  5 mm 

turbulence spectral index a  11 3  / 

TABLE II.  IMAGING PARAMETERS 

Parameters Value Unit 

Wave length λ  0.55 mµ  

Receiver aperture D  50 mm 

Focal length f  55 mm 

Angular resolution δθ  0.2 urad 

 

 For weak turbulence(refractive index structure constant 2
nC  

within range of 186.4 10−×  and 17 2/36 10 m− −× ), 10 sample 
strengths are adopted and the corresponding imaging distance 
is 6000L m= . For moderate-to-strong turbulence(refractive 

index structure constant 2
nC  within range of 156.4 10−×  and 

13 2/32.5 10 m− −× ), 10 sample strengths are adopted and the 
imaging distance is 1000L m= . Only spherical waves are 
considered under such distances. Theoretical displacements 
computed during simulations are saved as ground truth for 
statistical analysis. Fig. 2 shows one simulated image and the 
feature point detection results. 

  
(a)   (b) 

  
(c)   (d) 

Fig. 2. Results under turbulence strength of  2 14 2/3
n 3.4 10C m− −= × . 

(a)Simulated image; (b)result of Hilbert transform;(c)result of 
binarization;(d)result of feature point extraction. 

 16 feature points have been extracted, corresponding to 16 
corners in the cherckerboard pattern. Results of fitting curves 
for displacements at each points show that curves for horizontal 
and vertical displacements are all of the bell curve as in normal 
distribution. Also, in moderate-to-strong turbulence distribution 
of displacements covers a wider range on x-axis than in weak 
turbulence. Take feature point number 6 as an example, the 
results for distribution fitting are shown in Fig.3. 

In the following steps quantitative analysis are applied to 
both ground truth in simulations and displacements at feature 
points, including KS test and computation of statistical 
parameters. The results for feature point number 6 is shown in 
Table.3, in which “√” means to accept the null hypothesis, 
namely the displacements are subjected to a normal distribution, 
while “×” means to reject the null hypothesis. We find that for 
weak turbulence strengths greater than 2 17 2/34 10nC m− −= ×  and 
all moderate-to-strong turbulence strengths, the statistical 
parameters are more likely to be close to ground truth, and are 
all able to accept null hypothesis in KS tests. This result 
primarily indicates that the method for computing 
displacements is more likely to get accurate results when 



turbulence strength is greater than 2 17 2/34 10nC m− −= × . One 
possible reason is that when distortions are minor, 
displacements obtained from images are easily affected by 
computational accuracy limitations and noises. Under different 
turbulence strength conditions, variance of displacements 

increases proportionally with turbulence strength, while the 
values of skewness and kurtosis remain fluctuating around 0 
and 3 respectively. There is no obvious tendency of the values 
of skewness and kurtosis varying with turbulence strength.

 
(a)          (b) 

Fig. 3. Horizontal displacements distribution curve at feature point number 6 under: (a)turbulence strength of 2 17 2/3
n 6 10C m− −= × (weak turbulence); 

(b) turbulence strength of 2 14 2/3
n 7.4 10C m− −= × (moderate-to-strong turbulence). 

TABLE III.  STATISTICAL PARAMETERS AT FEATURE POINT NUMBER 6 UNDER DIFFERENT TURBULENCE STRENGTH 

strength 
Weak turbulence Moderate-to-strong turbulence 

171 10−×  172 10−×  173 10−×  174 10−×  175 10−×  176 10−×  141.4 10−×  143.4 10−×  145.4 10−×  147.4 10−×  149.4 10−×  131.4 10−×  

var 

GTa 0.0079 0.0158 0.0235 0.0314 0.0388 0.0485 0.0532 0.1109 0.1789 0.2714 0.3031 0.4283 

CDb 0.0206 0.0406 0.0529 0.0635 0.0748 0.0930 0.0587 0.1131 0.1792 0.2435 0.2884 0.4191 

skew 
GT 0.0353 0.0108 0.0108 -0.0078 -0.0073 0.0086 0.0147 0.0389 0.0344 -0.0053 0.0064 -0.0149 

CD 0.1814 0.0962 0.1354 0.0815 0.1026 0.0963 -0.0110 -0.0243 0.0047 -0.0224 0.0012 -0.0174 

kur 
GT 2.9502 2.9277 2.9198 2.8927 2.8597 2.8956 2.8069 2.8573 2.9553 2.8055 3.2472 3.0686 

CD 3.5238 3.7718 3.3205 3.2473 3.1974 3.2937 2.8191 2.8235 2.8265 2.9047 2.9401 3.0644 

KS 
GT √ √ √ √ √ √ √ √ √ √ √ √ 

CD × × √ √ √ √ √ √ √ √ √ √ 
a. GT=Ground Truth 

b. CD=Computed Displacement

Finally we compute statistical parameters for pixel 
displacements of simulated data at different sample times. For 
a same set of simulation parameter, simulation is perform 10 
times consequtively, and for each time 5000 frames of image 
data are generated. Since parameters setting in the simulation 

do not vary with times, experiment results show that statistical 
parameters of displacements also fluctuate around ground truth 
with times. Figure 4 shows how statistical parameters vary with 
times at feature point number 6 and 11 under turbulence 
strength 2 14 2/3

n 7.4 10C m− −= × . 

 
(a)    (b)     (c) 

Fig. 4. Statistical parameters at feature point 6 and 11varying with times:(a)variance; (b)skewness;(c)kurtosis



B. Real Scene Data 
In this section, the methods for computing displacements 

at feature points and statistical analysis are applied to real 
scene data. Image sequences are recorded using a BASLER 
acA1920-155um camera (150fps). Take car series as an  

 

example, a car is captured at different distances in a turbulence 
condition. Each sequence consists of 500 frames. The results 
of feature points extraction are shown in Fig.5.

 

    
(a)          (b)    (c)               (d) 

Fig. 5. Feature Points extraction for car series: (a)recorded  image; (b)result of Hilbert transform;(c)optical flow field;(d)8 feature points are extracted.

 8 feature points are extracted from each frame. Optical flow 
field vectors at those points are collected as 8 groups of pixel 
displacements. Non-parametric kernel density estimation is 
applied to estimate distribution curve, and statistical parameters 
are computed at each feature point. The results for feature point 
1~5 are shown in Fig.6 and Table 4. We observe that in real 
scene cases, distribution curves of displacements also appear to 
be bell curve as in normal distribution, while displacements of 
horizontal and vertical direction may show a significant 
discrepancy in statistical results. Since the 8 feature points are 
of the same imaging distance, this means real turbulence has 
different strengths along horizontal and vertical directions. 
Skewness and kurtosis fluctuate in a wider range compared 
with simulated cases. A too large kurtosis will lead to a 
rejection in KS test, such as point 3 in Table 4. 

TABLE IV.  STATISTICAL RESULTS FOR CAR SERIES 

Mark 1 2 3 4 5 

var 

hc 2.7288 2.0162 2.0079 2.2782 2.9519 
vd 1.0750 1.1788 0.6137 1.1662 2.7820 

skew 
h -0.0049 -0.1447 -0.6881 0.6943 -0.3284 
v -0.1919 0.0064 0.5356 -0.2106 -0.2153 

kur 
h 4.0881 3.7236 4.2193 3.3828 3.6086 
v 3.4420 3.9356 4.5659 4.2699 3.9613 

KS 
h × √ √ √ √ 
v √ √ × √ √ 

c. h=horizontal 
d. v=vertical 

  

  

 

Fig. 6. Results of distribution curve fitting for feature points 1~5. 

Fig.7 shows how statistical parameters at feature point 1 
vary with time. For a fixed distance, variance of both 
horizontal and vertical displacements may vary dramatically 
with time, indicating dramatic fluctuations of turbulence 
strengths. Skewness and kurtosis still fluctuate around 0 and 3 
respectively, but within a wider range compared with simulated 
cases. No obvious uniform tendency of statistical parameters 
varying with time is observed. 



 
(a)   (b) 

 
(c) 

Fig. 7. Results of statistical parameters varying with time at feature point 
number 1:(a)variance;(b)skewness;(c)kurtosis. 

IV. CONCLUSIONS 
In this paper, statistical analysis of properties of 

atmospheric turbulence-induced image dancing is performed. 
Simulation experimental results show that for weak turbulence 
strengths greater than 2 17 2/34 10nC m− −= ×  and all moderate-to-
strong turbulence strengths, displacements are less likely to be 
affected by computational accuracy and noises, and the 
statistical parameters are close to ground truth. Distribution 
curves, KS test and higher moments parameters all indicate that 
displacements are subjected to normal distribution for 
turbulence strength which is greater than 2 17 2/34 10nC m− −= × . 
Real turbulence-induced image sequence experimental results 
show that variances of horizontal and vertical displacement 
show a dramatic discrepancy, and vary with time, while 
skewness and kurtosis remain fluctuating around 0 and 3 
respectively. Most displacement samples in real scene can 
accept null hypothesis, indicating they are sujected to normal 
distribution.  
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