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Figure 1: We present iPose, a system for interactively reconstructing 3D human poses (b) via simple 2D operations on top of
video frames (a). Given an initial 3D pose (with errors) from a computer vision approach (c), a user can easily manipulate the 3D
pose via 2D joint handles (d), and our algorithm will automatically refine the 3D pose by “snapping” it to the video subject (e).

ABSTRACT
Reconstructing 3D human poses from video has wide applications,
such as character animation and sports analysis. Automatic 3D
pose reconstruction methods have demonstrated promising results,
but failure cases can still appear due to the diversity of human
actions, capturing conditions, and depth ambiguities. Thus, manual
intervention remains indispensable, which can be time-consuming
and require professional skills. We thus present iPose, an interactive
tool that facilitates intuitive human pose reconstruction from a
given video. Our tool incorporates both human perception in speci-
fying pose appearance to achieve controllability, and video frame
processing algorithms to achieve precision and automation. A user
manipulates the projection of a 3D pose via 2D operations on top of
video frames, and the 3D poses are updated correspondingly while
satisfying both kinematic and video frame constraints. The pose
updates are propagated temporally to reduce user workload. We
evaluate the effectiveness of iPose with a user study on the 3DPW
dataset and expert interviews.
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1 INTRODUCTION
Reconstructing 3D human poses from monocular video provides a
more accessible means to studying human movements than sensor-
based 3D motion capture (MoCap), which is intrusive and requires
specific equipment. Diverse and realistic human movements cap-
tured by videos can also improve digital character animation work-
flows.

Nonetheless, obtaining accurate 3D poses from video is still a
challenge. In recent years, advancements in computer vision have
shown promising results in automatic 3D human pose reconstruc-
tion from video [6, 32, 35]. However, pose reconstruction can still
fail in many scenarios, such as under self-occlusions, unusual poses,
and the inherent depth ambiguity. In addition, the limited diversity
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of pose and body shape variations in training datasets often do
not generalize well to in-the-wild videos. Improving reconstruc-
tion accuracy by designing more sophisticated automatic methods
or by collecting datasets with greater pose and shape diversity is
difficult and might still produce results with artifacts. In contrast,
both identifying errors in pose reconstruction results and speci-
fying corrections are relatively easier tasks for human perception
than for automatic video processing algorithms. We thus propose
to introduce human interventions in the reconstruction process to
eliminate artifacts and achieve better results.

On the other hand, manual reconstruction of 3D poses using
commercial software [16] is complex and tedious, requiring profes-
sional 3D pose editing skills. Some animation workflows [29, 40]
incorporate human pose priors to simplify the editing while retain-
ing the realism and naturalness of human movements. However,
pose priors obtained from general human movements might not be
applicable for every individual (e.g., stroke patients with gait asym-
metry). Although some mismatches between the reconstructed
poses and the video subject’s poses can be acceptable in anima-
tion workflows, such pose reconstruction methods cannot support
kinesiological analysis scenarios.

In this work, we aim to bridge the gap between full manual pose
reconstruction and automatic methods by designing an intelligent
interface, iPose, for interactive human pose reconstruction from
video. As shown in Fig. 1(a-b), the input to our system includes video
frames and initial 3D poses estimated by an automatic computer
vision method, which may contain errors. A user identifies errors
through mismatches between the projection of 3D pose and the
subject in the video frame and manually corrects them. Since the
video is the only reference for pose reconstruction, we postulate
that editing the human pose within the visible viewplane (i.e., video
frame) is easier than in 3D space. We thus design 2D operations to
make the 3D pose editing task simple. In particular, the user can
locally align a specific body part by dragging 2D joint handles (the
colored circles in Fig. 1(d)) on the projection to modify the 3D pose.

At the core of our method is a mapping from 2D position changes
of joint handles to 3D pose parameters. This 2D to 3D mapping is
ambiguous and we incorporate both kinematic and video frame con-
straints to address this ambiguity. In addition, because the precision
and efficiency of humans’ manual operations are limited, we com-
pensate them with algorithms. Specifically, after the user specifies
the pose of a local body part, our algorithm utilizes video frames
to automatically refine the user’s specification by aligning the pro-
jection of the 3D body part to its segmentation in the video frame
(Fig. 1(e)). Upon such specifications at one frame, iPose propagates
the changes to future frames using automatic video processing to
reduce the user workloads.

We evaluate the effectiveness and accuracy of iPose via a user
study on the ground-truth 3D poses in the 3DPW dataset [38] and
interviewswith domain experts in sports analysis and rehabilitation.
To the best of our knowledge, our system is the first approach to
combine interactive and intelligent tool in pose reconstruction
from videos and utilize human factors to make video-based pose
reconstruction more accurate and controllable.

2 RELATEDWORK
Video-based MoCap. 3D human pose reconstruction methods in

computer vision are implemented by either regressing 3D joint
positions from images [5, 30] or recovering 3D joint rotations by
utilizing a 3D body model [33, 41]. In both types the accuracy
can be affected by many factors, such as viewpoints, motion blurs,
and pose and shape variations in the training datasets. Research
aiming at improving reconstruction accuracy includes collecting
datasets with greater pose diversity [8, 14, 20], introducing physical
constraints [31, 35, 39], and designing better neural network archi-
tecture [13]. Our approach builds upon such automatic methods,
but addresses their errors with human interventions. In the annota-
tion of the Motion-X dataset [26], the initial poses from automatic
computer vision methods are refined by fitting to detected 3D joint
positions via optimization. However, such automatic refinement
still results in errors in the optimized poses and requires human
verification to exclude videos with artifacts. The limitation in such
optimization-based solutions motivates us to seek analytical [34]
mappings between user operations and human pose parameters to
retain full controllability in users’ interventions.

Interactive Character Posing. Interactive character posing has
gained significant attention in computer graphics and animation,
driven by the growing demand for user-friendly tools in various
creative industries such as gaming, film, and virtual reality. When
editing without a reference motion, multiple constraints have been
proposed to indicate how the remaining parts of the body are up-
dated with respect to a moving joint. Examples of constraints in-
clude human pose prior captured with latent space [19, 29, 37],
inverse kinematics [1] and user-specified fixed joints [40]. How-
ever, in monocular pose reconstruction, such pose prior might not
match the video subject’s pose due to individual movement differ-
ences. In contrast, the reference motion from the video provides
stronger cues of pose constraints than other priors. We make use of
the cues on body part contours in video frames to in return reduce
the ambiguity of IK. A tool closest to our purpose is DeepMotion’s
Rotoscope Pose Editor [12], which only allows per-joint position
specification without any constraints, easily resulting in distorted
poses.

Inverse kinematics. IK is a fundamental technique in computer
graphics and animation, enabling the realistic and efficient manip-
ulation of articulated structures. In general, IK techniques can be
classified into numerical [1], analytical [34], data-driven [29, 37] and
hybrid solutions [25]. Please refer to a comprehensive survey [2]
for details on the four types. We build our approach on analyti-
cal IK to support live interactions. IK has been well-recognized
for its ambiguity as multiple solutions exist. The most common
probabilistic approaches [19, 29, 37] that suggest the pose closest
to mass distribution do not fit our case-specific goal. Some existing
work solves the ambiguity by incorporating animators in the loop,
such as selecting from possible pose suggestions [10]. We adopt
a similar idea to [21] that uses images as constraints in inverse
kinematics. While they only penalized bone segments fall out of
the body silhouette, our method explicitly fits the body surface to
silhouette to constrain poses at a finer level.
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Figure 2: The user interface in the pose mode. (a) Panel buttons for loading videos, switching among modes, and controls for
temporal propagation and undo; (b) a video viewer for supporting 2D operations on top of video frames; (c) 3D pose viewer for
allowing 3D pose manipulations with a traditional rotation widget (d); (e) shape sliders for fine-tuning body shape parameters;
(f) control option to disable the automatic snapping of body parts to video frames.

3 PRELIMINARIES
We adopt the SMPL model [27] as the 3D pose representation in our
pipeline due to its efficient computation of realistic shapes under dif-
ferent poses. The SMPL model is parameterized by 72-dimensional
pose parameters 𝜃 , which are local axis-angle 3D joint rotations
for each of the 24 joints, and 10-dimensional shape parameters 𝛽 ,
which are coefficients of blend shapes obtained by Principle Com-
ponent Analysis (PCA). The SMPL model𝑀 (𝛽, 𝜃 ) maps shape and
pose parameters to vertices of a 3D mesh. The model also defines a
regressor function 𝐽 that regresses 3D joint positions from mesh
vertices, and body part segmentations that label each vertices with
a part ID.

We adopt a weak perspective camera in projecting the 3D SMPL
model to fit the 2D landmarks as in most automatic fitting meth-
ods [6, 33, 41]. Specifically, the camera is parameterized by the
translation (denoted as 𝑡𝑥 and 𝑡𝑦 ) and scale (denoted as 𝑠𝑥 and 𝑠𝑦 )
along the 𝑥 and 𝑦 dimensions. A 2D joint detection method is first
applied to compute the landmarks of the 𝑛 joints in an image, de-
noted as (𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, 2, ..., 𝑛. The automatic fitting solves for the
optimal camera and SMPL parameters that minimize the distances
between the projection of 3D joints (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 ), 𝑖 = 1, 2, ..., 𝑛 and the
2D landmarks.

4 USER INTERFACE
Our main user interface (Fig. 2) follows a conventional 2D-to-3D
modeling layout [17, 36] that contains a video viewer (Fig. 2(b)) and
a 3D body model viewer (Fig. 2(c)) for providing synchronized 2D
and 3D previews. The user interface works in three modes: camera,

shape, and pose mode, supporting the manipulation of the three
factors affecting the alignments between the projection and the
video subject.

Camera mode.We adopt a bounding box as a widget for manip-
ulating camera parameters in the video space. As shown in Fig. 3(a),
a user directly drags and scales the bounding box to align the pro-
jected 2D point cloud to the contour of the video subject at a global
level. The translation and scale of the bounding box modify the
underlying parameters of the weak perspective camera.

Shape mode. We follow the conventional solution that tunes
shapes with sliders. Among the ten SMPL body shape parameters,
we retain 5 with visual semantics (Fig. 2(e)). Although there are
more advanced semantic sliders (e.g., Semantify [18]), since they
modify shape globally, we adopt the original SMPL coefficients for
simplicity.

Pose mode. Obtaining users’ specifications on poses is the core
component of the interface. In commercial software, such as Unity
and Blender, 3D character poses are often manipulated via 3D giz-
mos (Fig. 4(a)), which separate the operations on each dimension
to reduce the ambiguity of positioning in 3D with 2D operations
(Fig. 4(b)). However, in our system where the input video frame is
the only reference, the space for editing is reduced to a 2D screen
space instead of the 3D space. We thus provide 2D joint handles that
allow a user to specify the desirable key joint positions within the
visible viewplane (i.e., video frame) in the 3D space. For simplicity,
among the 24 joints we visualize joint handles for 15 mobile joints
(e.g., wrist and ankle) and hide passive joints (e.g., shoulders and
spine) from users. When a 2D joint handle is being dragged, only
kinematic constraints (Section 5.2) are applied to provide a live
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Figure 3: When a user globally aligns the projection of the 3D pose to the video subject with a bounding box (a), the 2D operation
in the screen space produces a displacement vector (Δ𝑥,Δ𝑦) in both dragging (b) and scaling (c) of the bounding box. Similarly,
when dragging a joint handle, the 2D operation produces a displacement vector (Δ𝑥,Δ𝑦) that maps to the change in 3D joint
angle (d).

preview. After a joint handle is released, our system automatically
starts to parse the video frame to refine the pose (Section 5.3).

(a) (b)

3D Move gizmo

3D Rotate gizmo

3D Scale gizmo

Figure 4: (a) common gizmos for manipulating 3D objects [3];
(b) an example of 3D character pose editing in Unity (figure
credit: Luis Bermudez).

5 METHODOLOGY
This section introduces the algorithms for mapping from user op-
erations in the screen space to the camera parameters (Section 5.1)
and pose parameters (Section 5.2), utilizing video frames to refine
poses (Section 5.3), and temporal propagation of parameter changes
to reduce user interventions (Section 5.4).

5.1 Camera
When a user modifies the camera via the bounding box (Fig. 3(a)),
the corresponding operation produces a displacement vector (Δ𝑥,Δ𝑦)
in the screen space (Fig. 3(b)(c)). Δ𝑥 and Δ𝑦 produce new camera pa-
rameters (𝑡 ′𝑥 , 𝑠′𝑥 ) and (𝑡 ′𝑦, 𝑠′𝑦) along both dimensions independently.
Without loss of generality, we give the deduction of x dimension
of the left bottom control point. The deduction processes for the y
dimension and other control points on the bounding box are similar,
and thus omitted here.

Dragging. When a user drags the bounding box (Fig. 3(b)), Δ𝑥
only modifies the translation parameter 𝑡𝑥 . Specifically, given the
weak perspective projection 𝑥𝑖 = [(𝑋𝑖 + 𝑡𝑥 ) · 𝑠𝑥 + 1] ·𝑤/2, where𝑤
is the width of the video frame, the new projection after dragging
is: 𝑥𝑖 + Δ𝑥 = [(𝑋𝑖 + 𝑡 ′𝑥 ) · 𝑠𝑥 + 1] · 𝑤/2. Jointly solving these two

equations gives the new translation parameter 𝑡 ′𝑥 :

𝑡 ′𝑥 = 𝑡𝑥 + 2
𝑤

× Δ𝑥

𝑠𝑥
(1)

Scaling. When a user scales the bounding box by dragging a
control point (Fig. 3(c)), Δ𝑥 modifies both the translation parame-
ter 𝑡𝑥 and scale parameter 𝑠𝑥 . According to the weak perspective
projection, the projection of two points 𝑋1 and 𝑋2 after scaling
in the case of Fig. 3(c) is 𝑥1 + Δ𝑥 = [(𝑋1 + 𝑡 ′𝑥 ) · 𝑠′𝑥 + 1] · 𝑤/2 and
𝑥2 = [(𝑋2 + 𝑡 ′𝑥 ) · 𝑠′𝑥 + 1] ·𝑤/2, respectively. Jointly solving these
two equations gives the new scale parameter 𝑠′𝑥 :

𝑠′𝑥 =
𝑥2 − 𝑥 ′1
𝑥2 − 𝑥1

· 𝑠𝑥 (2)

Denote the coefficient in Equation (2) 𝑥2−𝑥 ′
1

𝑥2−𝑥1 as 𝑟 . Then according
to the equivalence of a random point 𝑋𝑖 : 𝑥2 + 𝑟 · (𝑥𝑖 − 𝑥2) = [(𝑋𝑖 +
𝑡 ′𝑥 ) · 𝑠′𝑥 + 1] ·𝑤/2, the new translation parameter is:

𝑡 ′𝑥 = 𝑡𝑥 + 1
𝑠𝑥

+ (1 − 𝑟 ) · 𝑥2
𝑟 · 𝑠𝑥 · 𝑤2

− 1
𝑟 · 𝑠𝑥

5.2 Pose
In the pose mode, the change in 2D position (Δ𝑥,Δ𝑦) of the 𝑖-
th joint is mapped to its change in 3D rotation Δ𝜃 . Specifically,
as shown in Fig. 3(d), the new position of a joint in the screen
space (𝑥 ′

𝑖
, 𝑦′

𝑖
) is first inversely projected into (𝑋 ′

𝑖
, 𝑌 ′

𝑖
, 𝑍 ′

𝑖
) in the

3D world space under joint kinematic constraints. Then the angle
between the vectors of the old and new joint positions with the
parent joint position, along with their normal directions, formed
the incremental axis-angle 3D rotation Δ𝜃 . To model kinematic
constraints, we categorize the joints on the SMPL model into the
following four types according to mobility (see Fig. 5(a)).

Fixed-based joints are those considered less movable due to
their stability requirements, e.g., shoulder collars and hips. They
can be indirectly manipulated through global translations or orien-
tations of the torso, which helps in maintaining overall rigidity.

First-level joints are joints that directly connect to fixed-based
joints, e.g., elbows, knees, and chest. A fixed-based joint, a first-level
joint, and a second-level joint form a two-bone structure (Fig. 5(b)),
connected with two bone segments. When a user drags a first-level
joint handle on the video frame, the positions of the fixed-based
and second-level joints remain unchanged. The trajectory of the
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Figure 5: The manipulation of a 2D joint handle produces different effects according to joint types (a). Manipulating a 3D body
model is a special case of general 3D manipulation in that it only involves deciding the relative depths of a joint to its parent
joint, and this task is much more constrained when the lengths of limbs are fixed. With parent joints serving as anchors in the
3D space, we construct auxiliary proxies (i.e., 3D ring for first-level joints (b), 3D sphere for end-effectors(c), and minimum
skew plane for second-level joints in (d)) at parent joints, and then the relative depth is found by a ray casting to these auxiliary
proxies. Second-level joints and first-level joints are formulated with two-bone kinematics chains. When the target position of
a second-level joint is set (d), the first-level joint is first rotated so that the two dotted lines have the same length (e left), and
then the kinematics chain is rotated at the base joint to align the second-level joint with the target (e right).

first-level joint in 3D is thus constrained by a 3D ring to maintain
constant bone lengths.

Second-level joints are those connected to a fixed-based joint
via first-level joints, e.g., the wrist, ankle, and neck. Their position
changes often largely influence the kinematic chain. When a user
specifies the target position of a second-level joint on the video
frame, its target position in 3D is determined by inverse projecting
the 2D position into a minimum skew viewplane [11](Fig. 5(d)).
Then the 3D positions of the first-level and second-level joints are
both updated according to the two-bone IK algorithm [9] (Fig. 5(e)).

End-effectors are joints whose movements are relatively more
independent and do not largely propagate back along kinematics
chains, such as head, hand, and foot. End-effectors connect to their
parent joints with a single bone segment (Fig. 5(c)) and are thus
constrained by a 3D sphere to maintain constant bone length.

There still exist ambiguities despite the above-mentioned ge-
ometry constraints. Specifically, for both the first-level joints and
end-effectors, the 3D joint can move towards two possible direc-
tions along the 3D ring or sphere [9]. We address this ambiguity
with a heuristic that a user’s manual intervention fine-tunes the
initial pose and should choose a side that retains the adduction

or abduction movement tendency. The algorithm thus checks the
relative depth between the manipulated joint and its parent joint in
the initial pose, and selects a side that makes the absolute relative
depth increase. In case the heuristic fails in specific scenarios, the
user can seek to the traditional 3D rotation widget (Fig. 2(d)) to
fix the errors. For the second-level joints, an inherent ambiguity
for two-bone IK is the uncertain orientation of the first-level joint
during the update. We empirically set the forward orientation as
the transformed forward axis of a first-level joint under T-pose. A
user can overwrite the forward orientation via the first-level joint
handle, which explicitly specifies the orientation of the two-bone
kinematics chain.

5.3 Pose Refinement
This section introduces the method for using video frame con-
straints to automatically refine the 3D pose. To maintain controlla-
bility, the refinement is conducted locally at body-part level instead
of globally to the whole body pose. The main idea is to first find the
transformation via the pixel-level mismatch between the projection
of a body part and its segmentation in the background video frame,
and then use the transformation to refine the foreground 3D pose.
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Figure 6: An illustration of using video frames as constraints to refine 3D pose. (a) Projection (orange point clouds) and
segmentation masks (blue and cyan masks) of body parts. (b)(d) Re-sampled contours of the projections and segmentation
masks. (c)(e) Transformed contours of body parts to align with the mask contours. (f)(g) Refinement processes of the end-
effectors and two-bones, respectively.

We first use the projected foreground body parts to parse video
frames. As shown in Fig. 6(a), the projection of the 3D vertices of
the body part (the orange point clouds) is used as an initial hint to
retrieve the segmentation of the body part in the background video
frame (the blue and cyan masks). We implement the video frame
body part segmentation with Segment Anything [23], using the
bounding box of projected vertices and the 2D position of the bone
center as prompts. However, the shapes of masks can be noisy due
to the influence of clothes and uncertain body part boundaries, and
thus they do not perfectly match the shapes of projected vertices
(Fig. 6(b)). We thus seek to use a robust alignment method to find an
optimal alignment that best snaps the body part projection to the
mask. Specifically, the projected body part vertices and the segmen-
tations are both converted to contour representations (Fig. 6(b)(d)).
Then we run a RANSAC [15] on both contours to compute robust
alignment with inliers identified by the algorithm. The results are
the optimal 2D translation and rotation, which are applied to the
projected joint positions to produce two displacement vectors at
both the parent joint and the user-specified joint (Fig. 6(c)(e)).

Then the displacements are used as constraints from video frames
to update the pose (Fig. 6(f)(g)) and meanwhile satisfying the kine-
matic constraints using the same method as in Section 5.2. The only
difference is that the 2D displacements are automatically computed
instead of specified by a user. Note that the pose refinement process
includes the video frame segmentation and the optimal alignment
that are not fully controllable. In case the algorithm produces errors,
a user can decline the snapping result via the undo button (Fig. 2(a))
and disable the automatic snapping (Fig. 2(f)) to retain the manual
correction results.

5.4 Temporal Propagation
The goal of temporal propagation is to automatically update fu-
ture 𝜏 frames upon a user’s specification at frame 𝑡𝑓 by using the
user’s specifications and the temporal consistency of video frames.
Since the errors in the camera and pose parameters do not fol-
low temporal consistency and are random in future frames, we
formulate temporal propagation as an optimization problem that
allows constraints to influence each other. We use user-specified

2D joint handles (𝑥𝑡𝑓 , 𝑦𝑡𝑓 ) as prompts to predict the landmark
positions in the future frames (𝑥𝑝 , 𝑦𝑝 ), 𝑝 ∈

[
𝑡𝑓 + 1, 𝑡𝑓 + 𝜏

]
using

a point tracking method (coTracker [22] in our implementation).
Denote the new pose as 𝜃 ′𝑝 = 𝜃𝑝 + Δ𝜃𝑝 . The objective is to find
pose corrections Δ𝜃𝑝 , 𝑝 ∈

[
𝑡𝑓 + 1, 𝑡𝑓 + 𝜏

]
and camera corrections

(Δ𝑠𝑝 ,Δ𝑡𝑝 ), 𝑝 ∈
[
𝑡𝑓 + 1, 𝑡𝑓 + 𝜏

]
in future frames, so that the projec-

tions of the 3D joints under new parameters best fit (𝑥𝑝 , 𝑦𝑝 ). The
objective function also includes a temporal smoothness term on
joint rotations, and constraints on the magnitude of Δ𝑠 and Δ𝑡 :

argmin
Δ𝑠,Δ𝑡,Δ𝜃

𝑡𝑓 +𝜏∑︁
𝑝=𝑡𝑓 +1

𝑛∑︁
𝑖=1

∥Π
(
𝐽

[
𝑀 (𝛽, 𝜃 ′𝑝 )

]
𝑖

)
− (𝑥𝑝,𝑖 , 𝑦𝑝,𝑖 )∥2

+ 𝜆𝑠𝑚𝑜𝑜𝑡ℎ

𝑡𝑓 +𝜏∑︁
𝑝=𝑡𝑓 +1

𝑛∑︁
𝑖=1

∥𝜃 ′𝑝,𝑖 − 𝜃 ′𝑝+1,𝑖 ∥
2

+ 𝜆𝑠

𝑡𝑓 +𝜏∑︁
𝑝=𝑡𝑓 +1

∥Δ𝑠𝑝 ∥2 + 𝜆𝑡

𝑡𝑓 +𝜏∑︁
𝑝=𝑡𝑓 +1

∥Δ𝑡𝑝 ∥2

(3)

Both joint position tracking and the optimization can also pro-
duce errors, where users can intervene manually again at specific
errors.

6 RESULTS
We implemented iPose with Python3.6 and PyQt5. See Appendix A
for implementation details. This section presents the results of a
user study evaluating the accuracy of pose reconstruction and the
usability of iPose (Section 6.1) and expert interviews (Section 6.2).
See Appendix B.2 and Appendix B.3 for more qualitative results.

6.1 User Study
Procedure. We recruited 8 participants (A1∼A8, aged 21∼33, three

female). A1 and A3 had experience in 3D modeling, A2 had back-
ground in monocular human pose reconstruction, A4, A7 and A8
had background in pose analysis, and A5 and A6 were novice in
all of these fields. In order to quantitatively measure the human
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pose reconstruction accuracy by iPose, we use the test set of the
3DPW dataset [38], which provides ground-truth 3D poses for 24
in-the-wild videos, with duration ranging from 387 to 1,824 frames.
See Appendix B.1 for details on dataset processing. We obtained
the initial parameters with a state-of-the-art automatic human pose
reconstruction method (ROMP [32]) and let participants correct
errors with iPose. We did not compare our method against tradi-
tional pose editing methods (e.g., using Blender) because they have
a significantly steeper learning curve.

In each session, a participant was first trained on two sample
videos outside the 3DPW dataset, and then corrected three videos in
a think-aloud manner. There was no limitation on editing time for
each video; the participants ended editing when they were satisfied
with the results. We recorded user intervention statistics, such as
editing time and usage of functionalities, as well as participants’
comments. See Table 2 for detailed statistics of the 24 videos. At
the end of the session, the participant completed a standard System
Usability Scale (SUS) questionnaire [7]. Each session took about four
hours, and the training session took about 20 minutes on average.

Accuracy. We adopt the conventional metrics of pose accuracy,
including mean per joint position error (MPJPE), Procrustes-aligned
MPJPE (PA-MPJPE), and mean per vertex position error (MPVPE).
Table 1 shows the accuracy achieved by iPose within the editing
time as listed in Table 2. We compared with automatic computer
vision methods, whose performance is derived from the original
papers.

Method ROMP PyMAF VIBE CycleAdapt
iPose[32] [41] [24] [28]

MPJPE ↓ 85.5 92.8 82.9 85.8 77.89
PA-MPJPE ↓ 53.3 58.9 51.9 53.9 47.52
MPVPE ↓ 103.1 110.1 99.1 102.1 95.51

Table 1: A comparison of pose reconstruction accuracy on
the 3DPW [38] test set. (unit: mm)

Our method achieved significant accuracy improvements over
existing automatic methods. In addition, we observed scenarios
where human perception is advantageous at addressing issues chal-
lenging for automatic methods. For example, as shown in Fig. 7(a),
when a subject is walking towards the camera, the aperture problem
makes the poses of limbs difficult to recover, but can be addressed
with human’s prior knowledge of walking movements. The video
subject’s left arm was heavily occluded in the Fig. 7(b). However,
with the understanding of the action that the video subject is point-
ing to a distant area, A1 easily recognized that the left arm should
be straight instead of curled. Fig. 7(c) contains challenging lighting
conditions with heavy occlusion, which is solved by a hybrid of
partial body parts observation and the knowledge of the getting
off car action. Fig. 7(d) is an example of camera perspective. A7
explicitly commented that it is difficult to compromise the right
foot to align with the frame, because it would result in the toe
pointing upwards and not matching reality. The camera distortion
also caused the video subject’s left leg to appear longer than the

right one. A7 edited referring to the 3D viewer instead of fixing the
alignment on the video frame.

We also inspected video frameswith large errors after corrections
with iPose and have identified the following main sources of errors.
First of all, the 3DPW dataset [38] in essence provides “pseudo”
ground truth 3D poses, and thus the precision of ground truth is
also limited. We observed many artifacts in ground truth 3D poses,
such as the left arm in Fig. 7(c) and the unstable leg poses in Fig. 9(d).
In these cases, the poses resulting from iPose are better than ground
truth regarding physical plausibility. Besides, a general type of error
is caused by the mismatch between the estimated body shape and
the actual video subjects’ body shape. Even though iPose supports
adjusting body shapes via sliders, there is an ambiguity in editing
the global scale of video subjects. As illustrated in Fig. 8, when there
is a misalignment between the projection and the video subject,
a user can either modify the camera scale parameter (Fig. 8(d))
or the body height parameter (Fig. 8(e)). Despite the alignment
on the video frame, there remains a near-constant error in joint
positions in themodel space. In order to verify the influence of shape
difference, we applied the ground-truth poses in the 3DPW test
set onto SMPL with body shapes after editing with iPose, resulting
in an average MPJPE 40.15mm, PA-MPJPE 20.71mm, and MPVPE
51.83mm (corresponding to 51.55%, 43.58%, and 54.27% of the total
errors in Table 2). The third type of error comes from cameramodels.
We adopt a weak perspective camera model to be consistent with
computer vision methods, but this introduces an approximation
error with the perspective projection [42]. Besides, the orientation
of the camera often causes failures in recovering the video subject’s
global orientation (e.g., Fig. 9(b)). Finally, the depth ambiguity and
occlusions remain challenging to solve when no precise semantics
exist. For example, the bending of the upper body in Fig. 9(a) and
the right hand in Fig. 9(c) remain uncertain.

Usability. The average SUS score was 80.93 (SD=11.38). While
all participants found iPose easy to learn, they agreed that it is
specific-purpose and not designed for the general public users.
All participants agreed or strongly agreed that functions in iPose
are well-integrated, and we observed that all functions were cov-
ered during their editing. For each video, apart from correction
operations, the participants spent large portion of editing time pre-
viewing the action, identifying the errors and considering about the
corrections. Since all frame contain certain amount of errors, the
participants focused on major errors to trade-off between accuracy
and editing time. Participants switched from 2D joint handles to
the 3D rotation widget mainly to move joints perpendicular to the
video frame (e.g., limbs in Fig. 7(a)) and adjust the orientation of the
head, indicating using one 2D joint handle to control the head is
insufficient. Participants disabled auto-snapping for end-effectors
because subjects in the 3DPW dataset wore hats and IMUs, making
the snapping of heads and hands unstable. Participants often used
the temporal propagation to reuse the correction results mainly
when the issues in the following frames were similar, and when the
corrections at a frame would be relatively complex but propagated
from a previous frame and then refined were easier. The temporal
propagation failed when movements were perpendicular to video
frames, such as the walking towards camera action (e.g., Fig. 7(a)).
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Figure 7: Examples of accuracy improvements due to human perception. (a) The aperture problem of limb movement when
the video subject is walking towards the camera is addressed by the prior knowledge of walking. (b) The occluded left hand
is recovered by the general understanding of the pointing action. (c) A challenging case with heavy occlusion and extreme
lighting conditions was addressed by aligning visible body parts and the knowledge of the getting off-car action. (d) An example
shows the influence of camera perspective and distortion, where the participant edited mainly according to the perception.

Design Reflections. Through the user study, we identified the
following limitations in the current design of iPose. Even though
the 3D viewer provides alternative viewpoints to videos, the partic-
ipants skipped checking under other viewpoints when there were
no large misalignments on the video. This is problematic when the

depth ambiguity is hardly noticeable. It is thus helpful to simultane-
ously visualize a few viewpoints to help identify the errors. Besides,
we provide one joint handle for manipulating the head following
the SMPL model definition, but this is often insufficient, so partic-
ipants had to use the 3D rotation widget for finer adjustment. It



iPose: Interactive Human Pose Reconstruction from Video CHI ’24, May 11–16, 2024, Honolulu, HI, USA

(a) video frame (b) ground truth (c) misalignment (d) camera scale (e) body shape (f) ours

Figure 8: An example illustrating the ambiguity in editing the global scale of the video subject in (a). When there is a misalign-
ment (c) in the global scale between the projection and the video subject, a user can either adjust the camera scale (d) or body
shape (e). Although either way can fix the alignment in the video space, the difference in body shapes between (b) and (f) causes
a near-constant error in joint positions.

video frame ground truth ours video frame ground truth ours

(a) (b)

(c) (d)

video frame ground truth ours video frame ground truth ours

Figure 9: Examples showing the sources of errors after corrections. (a) The bending of the upper body remains uncertain when
there is no prior knowledge of how the subject should sit on the sofa. (2) Failure in reconstructing a subject’s global orientation
due to the influence of camera orientation. (3) An example of partial observation where the right arm pose is hard to infer
when this action has minor semantics. (d) An example of artifacts in the ground truth data of the 3DPW dataset [38].

is worth a special design for the head joint, such as manipulating
look-at. Finally, the temporal propagation automatically corrects
a fixed number of future frames. However, since there are large
variations in video subjects’ action pace, it would be more desirable
to adopt a flexible temporal propagation scheme, where a user can
dynamically decide how many frames to propagate according to
action complexity and number of consecutive frames with similar
errors.

6.2 Expert Interviews
To understand the effectiveness of iPose in practice, we conducted
semi-structured interviews with a researcher in rehabilitation (E1)
and a practitioner in sports performance analysis (E2). We prepared
video footage of rehabilitation exercises and sports actions. During
the interview, we first demonstrated our interface and let the experts

try it freely. Then we discuss revolving questions such as how they
feel about iPose, how they position its role in their practice, and
suggestions on improvements. Each session lasted about one hour.

Both experts confirmed the usefulness of iPose in their practice.
E1: “Current clinical gait analysis relies heavily on marker-based
capture. Markerless methods are very sensitive to lighting conditions.
This tool demonstrates a promising future trend.” E2: “iPose will be
especially useful in two cases: the training of action reproducibility for
beginners and the analysis of an elite athlete template [4]. These two
cases require accurate poses but currently they can only be conducted
empirically by biomechanical analysts.” E1 suggests that it would be
useful to enable pose correction with events since the requirements
for accuracy differ with focus. For example, the range of motion is
a key attribute in evaluating a gait cycle, and it would be desirable
if a user can quickly locate the timing when a thigh reaches its
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extreme position and correct the pose at that moment. E2mentions
that when target users of the system are non-professional athletes,
it is recommended to trade some accuracy for speed in displaying
pose correction results.

7 DISCUSSIONS AND FUTUREWORK
In this paper, we present an interactive and intelligent tool iPose for
reconstructing accurate 3D poses from videos. We designed a user
interface that allows users to manipulate 3D poses with respect
to the video subject with simple 2D operations. The specified 3D
pose is automatically refined and the changes are propagated to
future frames. We currently use SMPL model, but our approach is
generalizable to other 3D body models.

The current prototype contains two main limitations. First, we
utilize low-level video frame features (i.e., contour of body parts)
as video frame constraints, which is not robust to occlusions and
video variations, such as clothes and hairs. In the future, we will
explore more robust solutions, such as introducing individualized
high-level motion prior of video subject to achieve globally co-
herent constraints. Second, currently iPose only supports modify
body shapes globally via the SMPL shape parameters. This is not
compatible with unusual video subjects’ body shapes, such as an
athlete with long legs. It thus worth exploring a local body shape
manipulation method to better facilitate the alignment between
SMPL model and video subjects.
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A IMPLEMENTATION DETAILS
iPose runs on a PC running Ubuntu20.04 (Intel i7 @3.6GHz, 12GB
RAM) with an Nvidia GeForce RTX 3080Ti GPU. The videos used
in the user study are of resolution 1080p, with a frame rate of 25
fps. Video frames are cropped and scaled according to the initial
projection of poses to best fit the video viewer window in the
interface. Video frame processing with Segment Anything [23] ran
at 0.5 fps on this PC in a separate thread from the main interface.
To avoid drifting, we empirically set temporal propagation within
five future frames, with duration about 10 seconds. 𝜆𝑠𝑚𝑜𝑜𝑡ℎ , 𝜆𝑠 and
𝜆𝑡 in Equation (3) are all set to 100.

B RESULTS
B.1 User Study Statistics
Table 2 shows the meta data of videos in the 3DPW test set and
statistics of user interventions in the user study.

Thirteen out of 24 videos in the 3DPW test set contain two sub-
jects. We randomly picked one of the subjects for annotation for
editing time consideration for these videos. “#frames” is the number
of valid frames of each video subject as indicated by the 3DPW
benchmark. We roughly balance the number of frames for each
participant. Participants only correct poses on valid frames since in-
valid frames often correspond to outliers such as missing or heavily
occluded video subjects. Accuracy metrics are also only computed
at valid frames, following the convention of the 3DPW benchmark.
All the accuracy metrics are under Protocol 1, i.e., without using any
ground truth during inference [24]. We only used the ground-truth
2D poses in the pre-processing of dataset to filter an identity from
the initial poses when there are multiple subjects in a scene (e.g.,
Fig. 7(c)). The accuracy metrics (MPJPE, PA-MPJPE, and MPVPE)

under “Meta Data” are the scores of the initial poses of selected
video subjects on valid frames estimated by ROMP [32].

Besides the factors discussed in Section 6, the resulting perfor-
mance is also highly dependent on the difficulty of corrections. For
example, in videos “downstairs 00” and “walkBridge 01”, there are
long segments where the video subject’s legs are hidden due to
occlusions and out of video frame boundary. In these videos the
hidden legs follow walking movements, and without video frame
backgrounds as references, the correction became a traditional edit-
ing of walking motion. The participant thus skipped the corrections
on the leg movements. In contrast, in videos “bus 00” and “flat pack-
Bags 00”, the video subject’s legs are also hidden due to occlusions.
But since in these cases the video subject is in a standing pose the
participant could relatively easily fix the errors.

B.2 Qualitative Results
We compare the reconstruction results from iPose with state-of-
the-art automatic computer vision methods, including three image-
based methods (ROMP [32], PyMAF [41], and BEV [33]) and two
video-based methods (VIBE [24] and CycleAdapt [28]). We used
video footage from the Internet with challenging sports poses. The
results are shown in Fig. 10. For automatic pose reconstruction,
there is no significant difference in temporal consistency nor regu-
larities in artifacts between image-based and video-based methods.
While no automatic computer visionmethod can reconstruct human
poses perfectly, iPose can effectively address the visible artifacts.

B.3 Comparison with Alternative Approach
3D body landmark detection is an orthogonal and complementary
task with respect to pose reconstruction. Specifically, more accurate
landmark detection could provide better handles for users to ma-
nipulate poses. To explore the possibility of an alternative approach
that first regresses 3D joint positions and then fits a 3D body model
to the joint positions with inverse kinematics, we compare the re-
sults from iPose with a state-of-the-art image-based 3D landmark
detection method MediaPipe BlazePose [5]. As shown in Fig. 11,
except for the occluded legs Fig. 11(d), BlazePose can accurately
locate the joint positions from the video viewpoint. However, it still
suffers from depth ambiguity, such as the errors in the elbow pose
in Fig. 11(e) and the right knee in Fig. 11(f). The misinterpretation of
the video subject’s center of gravity in Fig. 11(a) and (f) also makes
the poses hard to refine with manual interventions. Thus, there is
still a gap in incorporating 3D joint positions in the pipeline.

https://doi.org/10.1007/978-0-387-31439-6_115
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Meta Data User Intervention Statistics

Video name #frames MPJPE PA-MPJPE MPVPE time #keyframes #temporal #3D widget MPJPE PA-MPJPE MPVPE

arguing 00 898 83.95 58.94 118.30 109 151 49 32 69.31 40.17 97.55
bar 00 1,252 96.35 66.00 115.22 61 118 97 4 81.86 55.67 101.87
bus 00 1,066 91.56 56.14 118.52 46 70 113 5 82.62 48.76 112.10
cafe 00 934 79.75 51.77 96.80 55 84 102 24 73.27 44.61 91.98
car 00 735 98.28 57.89 116.90 51 63 87 11 92.45 53.82 111.51
crossStreets 00 508 83.18 57.50 98.24 89 90 62 23 71.29 47.70 88.19
downstairs 00 638 86.74 48.06 93.05 36 72 56 0 81.63 45.20 91.41
enterShop 00 1,385 77.79 41.62 92.73 45 182 161 28 70.05 37.25 89.79
rampAndStairs 00 980 80.12 54.99 93.49 92 216 117 54 69.93 49.60 84.35
runForBus 00 656 93.78 54.65 108.55 73 203 187 52 74.80 46.07 91.84
runForBus 01 692 111.43 65.17 135.11 106 70 101 18 89.83 61.47 113.81
sitOnStairs 00 1,329 94.79 62.71 109.61 95 229 126 63 78.59 56.32 94.71
stairs 00 1,197 85.83 58.12 105.33 26 58 32 0 83.95 57.16 102.73
upstairs 00 825 64.15 42.81 76.96 52 143 62 29 62.43 39.98 74.39
walkBridge 01 1,182 84.51 45.14 100.02 53 74 77 31 82.27 43.09 96.84
walking 00 1,264 83.51 52.43 99.19 45 137 129 38 76.94 46.98 90.42
walkUphill 00 387 73.13 49.68 91.06 67 91 104 29 69.04 45.10 88.65
warmWelcome 00 568 112.87 61.75 131.89 39 78 84 16 103.23 56.15 115.27
weeklyMarket 00 1,055 80.03 46.41 96.12 31 88 59 10 77.74 44.83 93.65
windowShopping 00 1,824 73.95 41.91 84.61 52 103 79 23 67.65 38.13 80.09
flat guitar 01 748 91.61 53.55 106.86 82 86 54 12 88.33 45.16 102.35
flat packBags 00 1,273 75.95 54.33 92.75 40 59 91 6 69.70 50.06 85.68
office phoneCall 00 789 73.41 47.67 97.45 54 65 49 37 64.01 40.86 89.55
outdoors fencing 01 939 93.52 53.27 109.62 32 152 24 5 88.47 46.39 103.50

Table 2: Statistics of the 24 videos in the 3DPW test set. “Meta Data” includes the number of valid frames and accuracy metrics
(MPJPE, PA-MPJPE, and MPVPE) before corrections (unit: mm). “User Intervention Statistics” includes editing time (unit: min),
the number of frames on which the participant makes corrections (“#keyframes”), the number of times the participant uses the
temporal propagation functionality (“#temporal”), the number of times a participant switch to the 3D widget to fix a specific
issue (“#3D widget”), and accuracy metrics after corrections (unit: mm).
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Figure 10: Qualitative comparisons of 3D pose reconstruction results between ROMP [32], PyMAF [41], BEV [33], VIBE [24],
CycleAdapt [28], and ours.
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Figure 11: Qualitative comparison with 3D body landmark detection from BlazePose [5].
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